This book chapter reviews the literature on agricultural innovation, with the threefold goal of (1) sketching the evolution of systemic approaches to agricultural innovation and unravelling the different interpretations; (2) assessing key factors for innovation system performance and demonstrating the use of system thinking in the facilitation of processes of agricultural innovation by means of innovation brokers and reflexive process monitoring; and (3) formulating an agenda for future research.
The process of knowledge brokering in the agricultural sector, where it is generally called agricultural extension, has been studied since the 1950s. While agricultural extension initially employed research push models, it gradually moved towards research pull and collaborative research models. The current agricultural innovation systems perspective goes beyond seeing research as the main input to change and innovation, and recognises that innovation emerges from the complex interactions among multiple actors and is about fostering combined technical, social and institutional change.
This book is the re-titled third edition of the widely used Agricultural Extension (van den Ban & Hawkins, 1988, 1996). Building on the previous editions,Communication for Rural Innovation maintains and adapts the insights and conceptual models of value today, while reflecting many new ideas, angles and modes of thinking concerning how agricultural extension is taught and carried through today.
The privatization of agricultural research and extension establishments worldwide has led to the development of a market for services designed to support agricultural innovation. However, due to market and systemic failures, both supply side and demand side parties in this market have experienced constraints in effecting transactions and establishing the necessary relationships to engage in demand-driven innovation processes.
Agriculture is crucial for the livelihood of millions of people worldwide and is one of the main drivers of deforestation, biodiversity loss and resource degradation. The contribution of agriculture to these environmental problems has been exacerbated by subsidies, which constitute the dominant public policy to support farmers. At the same time, other economic instruments introducing more sustainable land-use practices and incentivizing better environmental and social outcomes are already being applied worldwide.
The study was designed to answer the following three key questions:
(1) What types of investment instruments have been tested to support innovation in agri-food systems in the Global South, and how can these be categorized into a working typology?
(2) What is the evidence on how well different instruments have supported SAI's multiple objectives (e.g. social equality and environmental) at scale and what contextual and design factors affect their success or failure in achieving these objectives (e.g. type of value chain, who participates)?
This shift in thinking will require major shifts in policy, research, and investment. But where should these investments go? What foundations should be strengthened? Which gaps need filling? What’s working? What’s not?
In order to answer these questions in an informed way, we need to examine the evidence that exists and identify areas where more research is needed.
But this is easier said than done.
What are the patterns of funding in agricultural innovation for the Global South1 ? Who are the key funders in this innovation and who are the key recipients? How doesthis funding split between various topics and value chains? What proportion of these funds support Sustainable Agricultural Intensification (SAI)? And how is SAI innovation funding split across different parts of the agriculture sector funding and innovation canvas?
Increasing investment and spending in agricultural innovation is not enough to meet Sustainable Development Goal (SDG) targets of ending poverty and hunger because the effectiveness of investments in low- and middle-income (LMI) countries is affected by the low quality of infrastructure and services provided, and by different norms and practices that create a considerable gap between financing known technical solutions and achieving the outcomes called for in the SDGs.
Cities are highly visible centers of mass consumption of food and vast excretion of waste; they are less often associated with the production of food. Yet closer observation of cities in the Global South reveals that they are also locations of food production. This report describes the major challenges affecting crop cultivation and animal raising as well as food consumption in and around cities, where many households are poorly fed, negatively affected by unsustainable urbanization processes, and threatened with a warming and disease-prone world.