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Abstract 

Oil palm cultivation is a primary income source for millions of rural farm and non-farm households in the 

tropics but management systems of this tropical crop often vary in space. Understanding this spatial variation 

and driving factors is crucial in order to design effective and geographically targeted, and optimized 

interventions that support local farm productivity and sustainability. However, this has been hampered partly 

due to a shortage of data and methods to examine spatial heterogeneity in smallholder-dominated farming 

systems systematically.  Here, this issue is addressed using primary household data and a structured additive 

regression model including nonlinear spatial effects—so-called geosplines—to analyze micro-level spatial 

variation in smallholder oil palm yield, input use, and output prices in Jambi Province, Indonesia. We add 

several standard covariates in our estimation to help investigate the causes of the spatial variation. We identify 

distinct spatial variation in oil palm production activities within the different parts of the farm households’ 

settlements. Our results show that farm characteristics indicating stability (e.g., land titles) and specialization 

in oil palm production are associated with significantly higher oil palm yields, input use, and output prices. 

Further, proximity to a market center significantly increases input use and realized output prices. Finally, the 

estimated geosplines reveal that standard covariates explain only 50-60 percent of the spatial heterogeneity in 

our dependent variables. Controls for unexplained variation at smaller scales (e.g., village) can help, yet 

significant spatial patterns remain for input use and output prices. To explain these remaining patterns, a purely 

quantitative approach might not be sufficient. Thus, a combination of quantitative and qualitative information 

might be needed to target and optimize agricultural productivity and sustainability interventions 

geographically. 
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1. Introduction  

Smallholder farm households in developing countries represent the largest share of the world’s most 

impoverished population (De La O Campos et al., 2018). Because those households rely on farming for their 

food and employment, improving their farming systems’ productivity and sustainability remains a crucial 

development goal (UN, 2019). Among other things, progress towards achieving this goal requires 

understanding how agricultural production activities (farming systems) vary in local geographic space as well 

as identifying the different factors contributing to this spatial variation (Marenya and Barrett, 2007). 

Understanding spatial heterogeneity of household farming systems is vital because it helps target farmers that 

are most likely to benefit from appropriate agricultural (and welfare) policy intervention programs. However, 

this has been partly hampered due to a shortage of data and methods to systematically examine the spatial 

variation and its determinants in smallholder management systems. 

The topic of spatial heterogeneity in smallholder farm management systems is increasingly gaining attention 

from researchers recently, with the ultimate aim of supporting agricultural and sustainability interventions. So 

far, it has been shown that geographic proximity to commercial centers supports the diffusion and adoption of 

environmentally friendlier and modern farm innovations (Holloway and Lapar, 2007; Knowler and Bradshaw, 

2007; Wollni and Andersson, 2014; Tessema et al., 2016; Ebata et al., 2017; Vandercasteelen et al., 2018). 

Thus, the quality of infrastructure and environmental conditions significantly affect smallholders’ access to 

markets and technology and their possibility to benefit from improved value chains and retail formats. 

Interestingly, the studies available investigate spatial heterogeneity only in management systems of annual 

crops – spatial heterogeneity in perennial crops is yet to be examined. While perennial and plantation crops 

equally contribute to global smallholder income, their management system inherently differs from annual 

crops. For instance, they require costly planting investments, several years of growing, and year-round caring 

to bear yield (Corley and Tinker, 2016). One of these perennial crops largely factoring into smallholder 

incomes is oil palm. Millions of farm households in the tropics continue to adopt oil palm cultivation; about 

50 percent of the worldwide oil palm land is estimated to be managed by smallholders (Qaim et al., 2020). As 

oil palm yields throughout the year with a low seasonal variation, it allows for a steady income stream 

independent of seasons (Edwards, 2019). Hence, oil palm expansion is often linked to reducing rural poverty 

and malnutrition (Sibhatu, 2019; Qaim et al., 2020). Nonetheless, it is also associated with adverse 



 

 

environmental effects and increased social conflicts, particularly in Southeast Asia, where over 85 percent of 

global palm oil is currently produced (Qaim et al., 2020; Cisneros et al., 2021). Consequently, more and more 

studies investigate determinants and trade-offs of smallholder oil palm production (Drescher et al., 2016; Euler 

et al., 2016b; Euler et al., 2017; Qaim et al., 2020). However, to the best of our knowledge, none of these 

studies explicitly examine spatial variation and its drivers in such perennial crop management systems. Here, 

we aim to fill this knowledge gap in the literature. 

In particular, our study contributes to the existing literature in two ways. First, we investigate the spatial 

heterogeneity of oil palm production activities (indicated by yield, input use, and price of output) based on 

primary data of 793 smallholder households located in Jambi Province, Indonesia, a current hotspot of 

smallholder oil palm production (Clough et al., 2016; Drescher et al., 2016; Romero et al., 2019). Specifically, 

we evaluate whether the production activity indicators tend to cluster non-linearly and determine the physical 

location and scale of clustering. Our study area covers about 20,000 square kilometers and, thus, presents 

multiple environmental (e.g., altitude, rivers, (natural) forests) and infrastructural factors (e.g., cities, mills) to 

influence oil palm management and create spatial variation. Detecting the areas with higher or lower yield 

levels, input use, and output prices is crucial in geographically targeting agricultural and sustainability 

interventions and optimal resource utilization. 

Second, our empirical approach allows us to control for unexplained, structured spatial heterogeneity 

explicitly. Studies examining spatial determinants of (annual) agricultural management systems often pick 

spatial proxies a priori. A frequent example is distance or travel times to the next market center, assuming that 

costs for transportation affect input and output costs (Damania et al., 2017; Vandercasteelen et al., 2018). 

However, recent studies also show that such one-dimensional proxies cannot capture more complex and 

nonlinear spatial patterns (Steinhübel et al., 2020; Steinhübel and von Cramon-Taubadel, 2021). Furthermore, 

studies usually do not check for any remaining spatial heterogeneity that is not explained by included 

covariates. Not considering this could lead to biased estimates and the interpretation of results as coefficients 

might not represent all factors determining clusters in agricultural management systems. By adding a so-called 

geospline to our predictor, we hypothesize and propose a straightforward approach to (a) investigate how much 

of the spatial variability in the dependent variables are picked up by standard covariates and (b) visualize 

remaining spatial patterns. 



 

 

Our analysis detects significant spatial variation in oil palm production activities within the different parts of 

the farm households’ settlements. Our results also show that farm characteristics associated with long-term 

stability (e.g., land titles, plantation age) and specialization are likely to improve smallholder oil palm systems 

(higher yields, input use, and output prices). Moreover, we find that—similar to annual cropping systems—

access to market centers is associated with higher input use and realized output prices in smallholder oil palm 

systems. However, our results also suggest that only about 50 percent of the spatial heterogeneity in oil palm 

yields, input use, and output prices is explained by standard covariates included in our predictor. Only for oil 

palm yields, a control for unexplained factors at the village scale can pick up most of the remaining spatial 

variation. For input use and output prices, however, significant spatial clusters remain. 

The rest of this article is structured as follows. The following section provides a brief overview of oil palm 

production in Jambi province. Data and the empirical strategy are presented in section 3. Section 4 reports and 

discusses the finding before concluding the paper in section 5. 

 

2. Background on Jambi province and the cultivation of oil palm 

A native to Central and West Africa, oil palm (Elaeis guineensis) was first introduced to then Dutch 

administered Sumatra island in the 18th century as an ornamental crop (Corley and Tinker, 2016). While oil 

palm has been produced commercially in Indonesia since the early 20th century (Qaim et al., 2020), it 

dramatically expanded recently through transmigration programs and allowing plantation companies to control 

up to 20,000 ha (Dharmawan et al., 2020). Consequently, oil palm cultivation areas increased massively from 

1.1. Million ha in 1990 to 12.3 million ha in 2017 (Badan Pusat Statistik, 2017). Indonesia is now the number 

one producer and exporter of palm oil worldwide, economically contributing up to 10% of the country’s GDP 

(Qaim et al., 2020). 

Jambi province is located in the southeast of Sumatra Island, Indonesia, and was originally covered by tropical 

rainforests. Grass et al. (2020) report that by 2013 only 34.5 percent of the province was still covered by natural 

forests. The Sumatra island is known for its industrial plantations, including rubber and industrial woods 

(Beckert et al., 2014). In the study province, oil palm is mainly cultivated in lowlands and river basins, where 



 

 

the area is characterized by a humid tropical climate and frequent flooding during the rainy season (Merten et 

al., 2021).  

Smallholders are equally active in oil palm production on Sumatra island, accounting for about 61 percent of 

the island’s area cultivated with oil palm (Badan Pusat Statistik (BPS), 2019). Jambi Province was one of the 

target regions of the so-called transmigration program until the late nineties. This program entailed the 

government-supported migration of farmers from other parts of Indonesia to Jambi province and 

simultaneously encouraging them to enter company contracts to promote oil palm cultivation (Drescher et al., 

2016). However, since then, thousands of farmers in Jambi (and other areas of Indonesia) have also established 

oil palm cultivation businesses independently without any government support or company contracts. Now, 

there are more independent farmers than supported smallholders (Schwarze et al., 2015), and oil palm 

cultivation is, along with rubber, the dominant agricultural practice in the province (Sibhatu et al., 2015; 

Kubitza et al., 2018a; Sibhatu and Qaim, 2018). Recent surveys show that about 213 thousand farm households 

in Jambi are involved in oil palm production (Badan Pusat Statistik (BPS), 2018). Unlike contracted farmers, 

who are tied to companies in long-term arrangements, independent oil palm farmers manage their plantations 

and supply oil palm fruit bunches to processing mills independently without government subsidies and 

company interventions (Schoneveld et al., 2019). 

Since conversion to oil palm production often promises a higher and stable income, the number of smallholders 

starting to cultivate oil palm or expanding their production is still increasing (Cahyadi and Waibel, 2016; 

Santika et al., 2019; Sibhatu, 2019). Consequently, the demand for plantation land is constantly increasing, 

putting pressure on natural tropical forests because only a few areas remain that could be converted to oil palm 

plantation, particularly by smallholder farm households (Clough et al., 2016; Kubitza et al., 2018b). An 

alternative to expanding oil palm cultivation would be to increase the productivity of existing oil palm 

plantations. And some studies suggest that there is room for such improvement (Euler et al., 2016a), which 

might slow down the conversion of natural habitats.  

 



 

 

3. Methodology 

3.1.  Household survey 

This cross-sectional study uses survey data of 793 smallholder oil palm farmers in Jambi Province, Sumatra, 

Indonesia (Figure 1). The data were collected as part of the Collaborative Research Centre 990: Ecological and 

Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (EFForTS-CRC990). The 

EFForTS-CRC990 is an interdisciplinary and collaborative research program that investigates ecological and 

socio-economic effects of a significant transformation from forests towards a cash crop-dominated landscape 

of rubber and oil palm (Drescher et al., 2016).  The farm households were selected in a multistage-cluster 

sampling approach (Romero et al., 2019). At the first stage, five oil palm growing districts, namely, Muaro 

Jambi, Batanghari, Sarolangun, Tebo, and Bungo, were purposely selected (Figure 1). These regencies cover 

most of the tropical lowland areas in Jambi affected by the ongoing oil palm expansion, and smallholder farm 

households are the dominant producers (Romero et al., 2019).1  

At the second stage, a list of oil palm growing villages (n = 90) was compiled using the Village Potential 

Statistics (PODES) census data of the Indonesian Central Bureau of Statistics (Romero et al., 2019). Out of 

the 90 villages, 27 were randomly selected. Because the selected villages were all transmigrant households—

i.e., households migrated to Jambi from other islands in Indonesia through government transmigration 

programs—nine autochthonous villages were further purposely included. This brought the total number of 

villages to 36. At the final stage, farm households were randomly selected from each selected village; the 

number of households sampled per village varied proportionally to village size. Finally, after excluding a few 

observations with missing or unclear information, 793 household observations are eligible for our analyses. 

The full dataset is georeferenced, including village and household coordinates (latitude and longitude), which 

is crucial for spatial analyses. Furthermore, a wide range of information on socioeconomic, demographic, and 

                                                      

1 Figure 1 shows that some processing mills are located outside of the area covered in our study, suggesting that some oil 

production areas are not included in our study area. This is not an oversight during the sample selection, but those areas 

represent areas where plantation companies are dominant and where smallholder farmers are contracted and supply to 

plantation companies’ processing mills. Moreover, the management activities of those contracted farmers are managed 

by the plantation companies, not by the farmers themselves. Since we focus our study on independent oil palm producers, 

we neglect these particular areas of Jambi province.  

 



 

 

farm characteristics were captured for each household using a structured questionnaire and face-to-face 

interviews with household heads. Carefully trained data collectors did the household interviews in the local 

language Bahasa Indonesia. The survey was conducted between October and December 2015. 

 

 

Figure 1. Jambi provivce, Sumatra, Indonesia. 

 

3.2.  Outcome variables 

This article aims to characterize the spatial heterogeneity of oil palm production activities in smallholder 

households. To achieve this, identifying outcome variables that reflect farmers’ management decisions and 

intensities is paramount. In the literature, variables commonly used to measure differences in farm 

management intensity are yield, input use (amount of money invested in inputs), and output prices (Minten et 

al., 2013; Asfaw et al., 2016; Damania et al., 2017; Ebata et al., 2017; Vandercasteelen et al., 2018). Therefore, 

based on the survey data, we calculate the fruit bunch harvest in kilograms per hectare and use average prices 

per kilogram received by farmers in the last 12 months. We also calculate the amount of money invested in 

inputs (hereafter, we call it input use) for each household’s oil palm plantation, equal to the total input cost per 



 

 

ha in the past 12 months expressed in Indonesian Rupiah (IDR). Input use includes the amount of labor, 

fertilizer, herbicides, and pesticide applied and their respective prices in the past 12 months. As was done in 

previous studies, we do not disaggregate input use by type (Steinhübel and von Cramon-Taubadel, 2021). This 

is because many respondents hardly apply many types of inputs, which is a typical characteristic among oil 

palm farm households (Euler et al., 2016a).  

3.3.  Covariate selection 

Investigating the drivers of spatial patterns in oil palm production systems in Jambi is this study’s goal. Table 

1 presents all covariates included in our analysis grouped into either socioeconomic or geographic categories. 

The latter category is particularly important to generate a nuanced insight into spatial patterns of agricultural 

production systems because they all present exogenous spatially-clustered factors that can have important 

implications for agricultural productivity and management decisions.  

The socioeconomic variables comprise standard household controls such as age and education of the household 

head, household size, and specific to the Jambi context, whether the household lives in an autochthonous or a 

transmigrant village (measured at the individual household level). Furthermore, we include acreage variables, 

the share of plots with systematic land titles, input use, oil palm yield2, other crops managed besides oil palm, 

and awareness of the RSPO (Roundtable on Sustainable Palm Oil), the globally most recognized certification 

scheme for oil palm (Kunz et al., 2019) to capture differences among smallholder households. Finally, we note 

that all these variables are either inherent to or under the control of the household, and for any spatial clusters 

in these variables, we cannot assume exogeneity. 

In comparison, the geographic variables refer to variables that describe the environment in which smallholders 

navigate their farming activities and patterns beyond the (spatial) scale of the household. Assuming that these 

larger-scale factors are important drivers of the geographic variability in oil palm production, we define four 

subgroups based on spatial proxies commonly used in the literature. These are infrastructure, geomorphology, 

administrative units, and exact household location in space. By pulling together those different spatial factors 

                                                      

2 Input use and oil palm yield are outcome variables as well. Thus, input use is only considered as explanatory variable 

with the yield outcome variable. Oil palm yield is considered as explanatory variable with the price outcome variable. 



 

 

in one analysis, we aim to present a framework that allows for a systematic analysis of geographic patterns in 

agricultural production systems. 

 

Table 1. Types of explanatory variables included in the selection algorithm 
Type Indicator Remark 

Socio-economic variables   

1. Household characteristics Age of household head Years 

Education  Years 

Household size  Count 

Type of village a household belongs  Dummy: autochthonous =1; 0 = 

transmigrant 

   

2. Production characteristics Total land owned  Ha, log 

 Input cost/ha  ‘000 Indonesian Rupiah (IDR) 

 Oil palm yield Kg/ha a year 

 Age of plantation  Years 

 Share of plots with systematic land 

title 

Percentage (0-100) 

 Non-oil palm production  Dummy 

 Awareness of RSPO certification Dummy 

   

Geographic variables   

3. Infrastructure characteristics   

Distance to the nearest city  Km 

Distance to Jambi city Km 

 Distance to the nearest mill Km 

4. Geomorphological 

characteristics 

Altitude  Meters above sea level (masl) 

Access to a river  Dummy: Yes =1; No=0 

Household located at the edge of a 

forest  

Dummy: Yes =1; No=0 

5. Administrative units  Regency  Categorical variable 

Village Categorical variable 

6. Household location Household location Longitude, latitude 

 

The infrastructure characteristics contain proxies for households’ access to markets, such as the distance to the 

closest town, the distance to the province capital Jambi, and the distance to the closest palm oil mill. Access 

to urban centers and markets will likely lead to more intensified production systems (Damania et al., 2017; 

Vandercasteelen et al., 2018; Steinhübel and von Cramon-Taubadel, 2021). With proximity to markets, 

transportation costs normally decrease and, thus, households pay lower net input prices and receive higher net 

output prices. As a consequence, farmers might be more likely to modernize and intensify their production 

systems. 

Furthermore, previous studies have shown that biophysical and geomorphological factors significantly affect 

oil palm management intensity (Kubitza et al., 2018b; Romero et al., 2019; Merten et al., 2021). To capture 

this aspect, we include the distance to the edge of a forest, access to rivers, and altitude above sea level as 



 

 

geomorphological variables in our analysis. Access to a river might affect the possibility of irrigation. While 

farms located closer to forest edges are often more likely to lack formal land titles (Kubitza et al., 2018b), 

being near forest might also imply freshly converted fertile land, which positively affects farmers’ intensity 

production management. Higher altitudes can negatively affect oil palm productivity and indicate less 

accessible areas (Krishna et al., 2017a; Sibhatu, 2019).  

Variables controlling for administrative units are generally introduced to control for effects of unobserved 

factors on larger spatial scales (e.g., village and district) or to capture administrative conditions or local policies 

influencing household decisions (Kubitza et al., 2018b; Krishna and Kubitza, 2021). In our case, we include 

controls for the village and regency levels.  

Finally, we also consider the household coordinates (longitude, latitude) as an explanatory variable. Based on 

this information, we can estimate so-called geosplines or effect surfaces representing the effect of precise 

household location in two-dimensional space on the three outcome variables (see section 3.4 for details on the 

estimation). These effect surfaces also allow to capture and visualize spatial clusters not explained by the other 

variables presented in Table 1, and they control for potential social interaction effects because interpolation is 

based on averaging over neighboring households. 

3.4.  Empirical Strategy 

To determine whether oil palm yield, input use, and output prices tend to cluster and delineate the location of 

the clusters and to understand how demographic, socioeconomic, and geomorphological covariates affect the 

distribution of oil palm yield, input use, and output prices in Jambi, we apply a Structured Additive Regression 

(STAR) framework. This approach allows the estimation of different effect types (e.g., linear, nonlinear, and 

random) in the same model predictor.  

The STAR framework could be exceptionally helpful when analyzing spatial patterns since so-called 

geosplines could be added. Geosplines, one of the vital approaches to spatial analyses, uses the physical 

location of households (GPS coordinates of a household residence) within a given geographic area to determine 

nonlinear spatial clusters and map the location of spatial clusters. Geosplines are a straightforward tool to 

estimate and visualize spatial effects (Sharma et al., 2011; Steinhübel et al., 2020; Steinhübel and von Cramon-

Taubadel, 2021). The general idea of geosplines is that the GPS coordinates of a household residence can be 



 

 

used as a bivariate explanatory variable. Thus, longitude and latitude are each treated as a continuous variable 

and define a household’s position relative to the other households in the dataset. Utilizing the GPS coordinates 

also helps determine whether yield, input use, and output prices tend to cluster and delineate the location of 

the clusters. This approach can help agricultural and sustainability intervention programs target and determine 

the type and scale of planned interventions by determining and visualizing the physical location and the low 

and high levels of the indicators of farmers’ management activities. 

To estimate such nonlinear effects, we use penalized splines (P-splines) (Fahrmeir et al., 2013). For that 

purpose, the value space of the continuous variable is split into 𝑘 − 1 intervals, and for each interval, a 

polynomial of degree 𝑙 ≥ 0 is fitted. To produce one continuous effect function, i.e., the different polynomials 

must add up to one function, the function must be (𝑙 − 1) differentiable. A penalty term ensures that the 

function strikes the right balance between flexibility and smoothness. The smaller the intervals and the more 

polynomials are estimated, the more flexible the function will be and at some point, might be hard to interpret. 

Thus, smoothing based on the differences between estimated coefficients of neighboring observations ensures 

that the general patterns become visible. In statistics, splines have become a common tool and user-friendly 

packages in most statistical software programs facilitate the implementation (see our code in the supplementary 

material for an application in R). For a detailed introduction to the methodology see, for example (Fahrmeir et 

al., 2013; Umlauf et al., 2015). For spatial analysis, the interesting extension is the estimation of geosplines, 

i.e., two-dimensional P-splines based on longitude and latitude. The result is a smooth surface (instead of a 

smoothed line for a one-dimensional variable) that can be mapped and, thus, visualizes spatial patterns flexibly. 

In the subsequent analysis, we employ two model specifications to investigate spatial differences in how 

smallholders in Jambi produce oil palm. To ease interpretation and because the variables are skewed and/or 

quite spread out, we log-transform all three of them. For the input use, we use a 𝑙𝑜𝑔(𝑦 + 1)-transformation to 

adjust for zero observations.  

In the first model specification, we only estimate separate geosplines for each of the three outcome variables 

𝑎 =  (𝑦𝑖𝑒𝑙𝑑, 𝑖𝑛𝑝𝑢𝑡 𝑢𝑠𝑒, 𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑟𝑖𝑐𝑒): 

𝑦𝑎,ℎ = 𝑒𝑥𝑝(𝑓(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒ℎ , 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒ℎ) + 𝜀ℎ)    (1) 



 

 

where 𝑦 refers to the three log-transformed outcome variables 𝑎, the function 𝑓(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒ℎ , 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒ℎ) is 

the geospline based on the GPS coordinates of household ℎ, and 𝜀 a random error term. By only including 

𝑓(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒ℎ , 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒ℎ) in Equation (1), the resulting estimated effect surface shows the full structured 

spatial variation (i.e., spatial variation excluding the white noise) of the three outcome variables.  

Using the results of Equation (1) as the base, in the second model specification, we add the variables presented 

in types 1 to 5 in Table 1: 

𝑦𝑎,ℎ = 𝑒𝑥𝑝(𝑋ℎ𝛽 + 𝑣ℎ + 𝑓(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒ℎ , 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒ℎ) + 𝜀ℎ)    (2) 

Except for the village dummy, all variables are included as standard fixed effects 𝑋ℎ𝛽. Village random effects 

𝑣ℎ control for unobserved variables at the village level, i.e., the random effects allow for a village-specific 

deviation from the overall sample intercept. 

Finally, by comparing estimation results of equations (1) and (2), we can deduce if and to which extend the 

control variables in Equation (2) explain the spatial variation in the outcome variables (Equation (1)). We also 

expect that the geosplines in Equation (2) would reveal any remaining spatial clusters after controlling for all 

control and geographic variables presented in Table 1 (types 3 to 6 in Table 1).  

 

4. Results and Discussion 

4.1.  Descriptive statistics 

Our survey data reveals that, on average, farmers own about 5.7 ha of land. Out of this, only 0.7 ha is used to 

grow other crops next to oil palm, implying that the sample households are highly specialized in oil palm 

production. Furthermore, approximately 70 percent of the oil palm plots that the sample household cultivates 

are assigned by systematic (formal) land titles, the most legally recognized title for farmlands in Indonesia. 

This is a relatively high proportion for Indonesian smallholder farms. Note, however, that we only focus on 

oil palm farmers, of whom many received formal land titles through the government’s transmigration program 

(Gatto et al., 2017). For other crops, the share is much lower (Krishna et al., 2017b; Kubitza et al., 2018b).  

Less than seven percent of the households report being aware of the RSPO certification program in our sample. 

Thus, we can assume that the penetration of certification standards among independent oil palm farm 



 

 

households in Jambi is still low. Plantations are on average 15 years old and produce 19 tons of fruit bunches 

per year. This average yield seems slightly high for smallholders, particularly compared with other areas in 

Indonesia and other oil palm-producing regions in Asia, Africa, and Latin America (Qaim et al., 2020). 

However, in Jambi, oil palm is still predominantly cultivated by transmigrant households, who received 

training and technical and financial support for plantation establishment from companies and/or government 

(Euler et al., 2016b; Euler et al., 2017). Moreover, the province’s market and rural infrastructure (compared 

with Sulawesi, Kalimantan, or Papua) are well developed, and Jambi farmers also have extensive experience 

in handling commercial plantation crops such as rubber and industrial timber (Sibhatu, 2020). The average 

price received per kilogram of fruit bunch in 2015 is about 850 IDR, and an average farmer invests about 9.9 

million IDR per ha a year on agricultural inputs. This relatively high spending on inputs might also be a reason 

for the somewhat higher yields in Jambi.  

The last column in Table 2 presents the test statistics to analyze the statistical significance of differences in the 

farm, geomorphology, and household characteristics across regencies. The statistics suggest that almost all 

variables in our analysis show statistically significant variation across Jambi regencies. The only two variables 

not yielding a significant test statistic are household size and the gender of the household head.  

As for the dependent variables, the highest average yield per ha is reported in Bungo with almost 22 kg/ha, 

while farmers in Betanghari report only 16.34 kg/ha on average. Interestingly, however, farmers in Betanghari 

receive the highest average output price of 1,340 IDR per kg. Conversely, the lowest output prices are reported 

for Muaro Jambi, where households, nonetheless, spend about two times more on inputs than the overall mean 

of our sample (~ 12,940,000 IDR per ha / 908 United States Dollar). Also, other production characteristics 

vary across regencies. For example, Batanghari and Tebo’s farms are the largest, while the smallest ones are 

Sarolangung and Muaro Jambi. The awareness of the RSPO certification schemes appears to somewhat 

coincide with the differences in output prices. One-quarter of the respondents in Batanghari reported being 

aware of RSPO certification, but none is reported from Sarolangun.  

Furthermore, the oil palm farmers in our sample are, on average, 50 years old and received formal schooling 

for about 7.5 years. Nearly one-fifth of the households have access to rivers, but shares vary significantly 

among regencies. In Bungo, for example, almost 60 percent of farmers reported river access, whereas none 

had direct access to a river in Sarolangung. The same holds for the location close to forest edges, where zero 



 

 

percent of households are located in the proximity of natural forest in Batanghari, Bungo, and Muaro compared 

with 44 percent in Tebo. Household dwellings are located around 50 meters above sea level on average, with 

a variation of about 45 meters across all regencies.   

 

4.2. Structured spatial heterogeneity of oil palm yield, inputs, and output prices 

In order to find out whether there is a distinct spatial variation, we map the effects of household location 

(geosplines) separately on the three outcome variables (yield, input use, and output prices) without any 

covariates, as defined in Equation (1). The results are depicted in Figure 2.  As one might expect, all three 

variables show spatially distinct clusters of above-mean (red areas) and below-mean (blue area) observations. 

Areas colored in red indicate hotspots of higher yields per hectare (Figure 2a), higher input use (Figure 2b), 

and higher output prices (Figure 2c), while those in blue are clusters of lower yields, input use, and output 

prices. The scales in Figure 2 represent coefficient estimates. Because we log-transformed the outcome 

variables, we have to transform the coefficients to their linear equivalent to derive effects in percentage 

changes, ((𝑒𝑥𝑝(𝛽) − 1) × 100). For example, an absolute coefficient magnitude of 0.5 implies a 64.87 

percent increase above-average yields, input use, or output prices, ceteris paribus. Considering the scales of 

Figure 2, the spatial variation of oil palm yields and input costs appear particularly large but also output prices 

show spatial clusters up to 28 percent above and below the mean of 1,290 IDR per kilogram of oil palm fruit 

bunch (Figure 2c).  



 

 

Table 2. Descriptive statistics disaggregated by regency 

Variable 

  

All Households Batanghari Bungo Muaro Jambi Sarolangung Tebo 
Test 

statistica, b Mean Std.dev Mean 
Std.de

v 
Mean 

Std.de

v 
Mean Std.dev Mean 

Std.de

v 
Mean 

Std.d

ev 

Harvest /ha (‘000 kg) 19.46 7.71 16.34 9.80 21.71 6.46 20.25 8.63 19.11 7.71 19.54 10.07 13.22*** 

Input cost / ha (‘000 IDR) 
4344.1

7 

78765.2

2 

1185.6

6 

2928.7

5 

2769.4

4 

9506.0

4 

12940.8

5 

157382.2

0 

422.3

5 

2382.2

7 

1068.0

6 

4614.

42 
3.89*** 

Output price /kg ('000 IDR) 1.29 0.25 1.34 0.27 1.31 0.25 1.23 0.20 1.28 0.27 1.27 0.26 57.93*** 

              

Control variables              

Age of hh head (years) 49.68 10.26 46.99 9.29 51.94 10.17 50.57 10.90 48.94 9.80 49.62 10.19 5.56*** 

Education hh head (years) 7.49 3.62 7.85 3.46 7.17 3.69 7.19 3.61 6.94 2.82 7.92 3.90 2.16* 

Household size (count) 3.97 1.50 4.06 1.56 3.77 1.51 4.06 1.47 4.17 1.49 3.89 1.47 1.14 

Village type (auto. / transmig.) 0.24  0.38  0.00  0.23  0.00  0.41  35.72*** 

Gender hh head (Male/female) 0.98  0.98  0.99  0.96  0.98  0.99  1.80 

Total land owned (ha) 5.72 6.88 6.91 9.24 4.93 4.03 4.81 7.67 4.70 4.12 6.56 5.81 3.84*** 

Oil palm production area (ha) 4.98 6.44 5.86 8.58 4.37 3.67 4.63 7.69 4.34 4.06 5.24 5.00 6.54*** 

              

Age of plantation (years) 15.03 6.39 15.04 5.99 16.74 5.36 15.74 7.17 16.46 5.72 12.36 6.10 13.52*** 

Share of plots with systematic land title 0.69 0.42 0.64 0.43 0.86 0.30 0.63 0.44 0.80 0.36 0.61 0.46 11.44*** 

Aware of RSPO certification (dummy) 0.07  0.26  0.01  0.01  0.00  0.03  40.05*** 

Land areas allocated to non-oil palm crops 

(ha) 
0.74 1.88 1.05 2.36 0.55 1.32 0.19 0.59 0.36 0.61 1.31 2.59 11.62*** 

Distance to nearest city (Km) 27.33 8.19 27.35 8.22 22.00 4.39 31.67 6.62 32.08 0.94 25.64 10.01 47.47*** 

Distance to Jambi city (Km) 95.20 44.22 62.42 9.08 142.80 9.43 40.81 7.86 
124.3

9 
1.53 131.62 17.58 2853.32*** 

Distance to nearest mill (Km) 16.30 9.31 14.51 2.79 9.82 5.09 13.65 7.06 12.09 5.64 26.36 10.71 146.96*** 

Access to a river (dummy) 0.22  0.24  0.56  0.11  0.00  0.11  47.96*** 

Household located at the edge of forest 

(dummy) 
0.13  0.00  0.00  0.00  0.33  0.44  94.46*** 

Altitude 51.08 24.75 44.62 17.49 75.32 18.27 29.98 20.71 55.77 11.31 56.95 21.47 135.24*** 

No. Observations 794 177 160 198 66 193  

Notes: a Test for equality of 5 group means, assuming heterogeneity (Wald Chi-squared statistics are reported). b Non-normally distributed continuous variables are log-transformed 

for the test. Asterisks represent p-values, *** <0.01, ** <0.05 and *<0.1. auto. / transmig – autochthonous / transmigrant. hh – household head.  



 

 

In addition, Figure 2 suggests that the spatial clusters identified by the heatmap do not necessarily match 

regency boundaries, and we have to assume that additional factors influence the spatial heterogeneity in our 

dependent variables. Note, for example, the patterns around the Bukit 12 National Park in the south of our 

study area. Especially towards the east of this conservation area for tropical rainforest in South Batanghari, 

Figures 2a and b reveal much lower yield levels and input use. In contrast, in northern Batanghari, we observe 

some of the highest yields in our sample. Thus, based on our estimated geosplines, we can identify clear in-

regency spatial patterns that do not become evident in the descriptive analysis presented in Table. This means 

that we have to assume that—if a set of different factors drives spatial heterogeneity in yields, input costs, and 

output prices (e.g., forests, administrative boundaries)—one spatial scale is not enough to account for the total 

spatial variation in the dependent variables. Instead, only a spatially explicit approach, such as presented in 

Figure 2 based on the smallest scale of observation (i.e., households), will allow for a complete picture.  

If we assume that the three dependent variables represent the oil palm production systems in Jambi, the 

comparison of the three maps in Figure 2 also reveals some overall spatial patterns. For example, we observe 

above-average levels for all three dependent variables in the west of our study area. That means smallholders 

spend relatively much on inputs and produce high yields, for which they receive above-average prices. In the 

center of our research area, we find a large cluster of above-average output prices (Figure 2c), but a sharp 

north-south divide in above and below-average yields and input spend. In contrast, farmers in the east spend 

average amounts on inputs, and also harvest quantities are close to the sample mean. Nonetheless, they receive 

below-average prices for their produce. This is particularly interesting because the province capital, Jambi, is 

located in this area. Normally, the literature suggests that transaction costs decrease with proximity to urban 

centers and markets, and farmers receive higher net output prices (Damania et al., 2017; Vandercasteelen et 

al., 2018). However, recent studies also highlight those smaller towns might be more relevant for agricultural 

production than large urban centers (Steinhübel and von Cramon-Taubadel, 2021). 



 

 

 

Figure 2: Estimated geosplines based on Equation (1), a) oil palm yields, b) input use, c) output price. 
Notes: Areas colored in red indicate above-mean yields per hectare (a), higher input use (b), and higher output prices (c), 

while those in darker blue, clusters of lower yield, input use, and output prices. The scales represent coefficient estimates. 

Outcome variables are log-transformed. Regency names (depicted in Figure 1) are left out for clarity. 

 



 

 

4.3.  Drivers of spatial heterogeneity of oil palm yield, inputs, and prices  

Our analysis in section 4.2 shows that oil palm production in Jambi varies in space. Now, the question is 

whether farm, environmental, and socioeconomic factors can explain the observed spatial clusters in oil palm 

yield, input use, and output prices. Hence, in Table 3, we present estimation results for the model in Equation 

(2). The estimated effect surfaces (geosplines) as specified in Equation (2) are shown in Figure 3. 

Column (1) in Table 3 shows the factors that are associated with oil palm yield. The intensity of input use, age 

of plantations, and systematic land title all have positive and statistically significant coefficients. With every 

additional 1,000 IDR a farmer spends on inputs per hectare, yields per hectare increase by 4.3 percent 

((𝑒𝑥𝑝(0.042) − 1) × 100). Similarly, with every additional year, a plantation produces 3.2 percent 

((𝑒𝑥𝑝(0.042) − 1) × 100) more output. However, this effect is not linear. In Figure A.1, we present a 

nonlinear estimate of the effect of plantation age (keeping the rest of the model specification the same), and it 

suggests that the positive age effect only holds until ten years of age. After 25 years there is even a slight 

decline. Smallholders with systematic land titles reported 10.6 percent ((𝑒𝑥𝑝(0.101) − 1) × 100) higher oil 

palm yields ceteris paribus. Particularly in perennial (i.e., long-term) crop systems, a land title provides 

security to smallholders that investments and intensification pay off in the future. Thus, the positive effect is 

plausible. Also, a land title allows farmers to use their land as collateral to access rural financial markets or to 

diversify their off-farm livelihood systems (Krishna et al., 2017b). Only slightly above conventional 

significance levels (𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  0.139), also a location at the edge of forests seems to be associated with 

high oil palm yields. Note that this dummy refers to any kind of forest and is not exclusively tied to 

conservation areas. Farms at forest margins could have higher availability of organic matter and other nutrients 

in their soil system from the forest covers in the recent past, thus supporting higher yields at least in the first 

planting. In addition, plantations close to natural forests might be younger because they result from more recent 

land conversion. Kubitza et al. (2018b), for example, show that, in Jambi, proximity to a forest is positively 

associated with bigger farm size, possibly acquired by deforestation but often without official land titles. 

Therefore, short-term rewards from higher yields from deforestation might be a smallholder strategy to 

compensate for missing formal land titles. Finally, a location at higher altitudes significantly decreases oil 

palm yields. This is consistent with previous studies that show that environmental conditions for oil palm 



 

 

production are better in lower altitudes and, thus, also discourage oil palm adoption in higher altitudes (Corley 

and Tinker, 2016; Krishna et al., 2017a; Sibhatu, 2019). 

In column (2) in table 3, we report factors associated with input use. Again, we find significant positive effects 

of formal land titles, the number of plots, and the distance to Jambi. As mentioned earlier, stronger land 

property rights combined with bigger farm sizes could encourage farmers to intensify input application and 

increase productivity. This matches the findings by  (Kubitza et al., 2018b), which show that farmers who own 

formal land titles deforest less but increase their input intensity in Jambi. The cultivation of other crops (i.e., a 

higher agricultural production diversity) is associated with lower use of inputs of 51 percent ((𝑒𝑥𝑝(−0.717) −

1)  × 100). This is plausible since we can assume these farms to be less specialized in oil palm production. 

Interestingly, the distance to the capital Jambi decreases input use, whereas input use seems to increase with 

proximity to other (nearest) towns, though the p-value is slightly above conventional levels (𝑝 − 𝑣𝑎𝑙𝑢𝑒 =

 0.166). This matches results of recent studies that suggest that smaller towns might be more relevant for 

agricultural intensification than large urban centers (Steinhübel and von Cramon-Taubadel, 2021). The latter 

often offer more non-farm employment opportunities and, thus, increases opportunity costs for agricultural 

intensification (e.g., farm labor becomes more expensive).  

When it comes to output prices, it appears that established, specialized, and large farms have the best chance 

of receiving above-average prices for their oil palm produce. That is, farm size, yields, plantation age, and 

formal land titles have a statistically significant association with higher output prices, whereas the management 

of additional crops is related to lower prices. Literature has shown that large farms tend to be more specialized 

and have a higher potential for sustainably commercialized production (Meemken, 2021). Hence, it is plausible 

that these smallholders might be better informed about prices and choose market places. Furthermore, we find 

that also the location at a forest edge is associated with 19 percent ((𝑒𝑥𝑝(0.101) − 1) × 100) higher realized 

output prices. Again, this might point towards some short-term gains from deforestation without formal land 

titles. In addition, similar to input spending, our results suggest that remote smallholder farms receive lower 

prices for their oil palm yields. With every additional kilometer away from an urban center, prices decrease by 

0.4 percent ((𝑒𝑥𝑝(−0.004) − 1) × 100). These results match findings in the literature that show that market 



 

 

access is an important factor in agricultural prices (Levi et al., 2020). Note that this effect is only statistically 

significant for the closest town but not for the distance to the province capital Jambi. 

 

Table 3. Estimation results, Equation (2) 

 

(1) 

Yield /ha  

(log, kg) 

 (2) 

Input use / ha (log, 

'000 IDR) 

 (3) 

Output price /kg (log, 

'000 IDR) 

Socio-economic variables      

Age of hh head (years) 0.001 (0.002)  -0.001 (0.008)  0.0003 (0.001) 

Education hh head (years) 0.005 (0.005)  0.033 (0.022)  0.002 (0.001) 

Household size (count) 0.010 (0.012)  -0.067 (0.049)  0.001 (0.003) 

Village type (dummy, trad. /transm.) -0.036 (0.109)  -0.219 (0.341)  -0.017 (0.024) 

Total land owned (log, ha) 0.008 (0.036)  0.036 (0.146)  0.038*** (0.009) 

Input cost / ha (log, ‘000 IDR) 0.042*** (0.009)    0.005** (0.002) 

Harvest /ha (log, kg) NA    0.043*** (0.009) 

Number of plots (count) 0.030 (0.022)  0.162* (0.087)  0.008 (0.005) 

Age of plantation (years) 0.033*** (0.004)  0.018 (0.015)  0.001 (0.001) 

Share systematic land title 0.109** (0.054)  0.524** (0.217)  0.034** (0.013) 

Cultivate other crops (yes=1; no=0) -0.014 (0.049)  -0.704*** (0.197)  -0.033*** (0.012) 

Aware of RSPO certification (dummy) -0.043 (0.096)  0.484 (0.387)  0.016 (0.024) 

      

Spatial variables      

Distance to nearest city (Km) -0.001 (0.006)  -0.031 (0.023)  -0.004** (0.002) 

Distance to Jambi city (Km) 0.001 (0.003)  0.024* (0.014)  0.001 (0.001) 

Distance to nearest mill (Km) -0.005 (0.005)  0.006 (0.023)  -0.001 (0.002) 

Altitude (meter above sea level) -0.003*** (0.001)  -0.002 (0.005)  -0.0003 (0.0003) 

Access to a river (dummy) 0.025 (0.107)  0.264 (0.286)  -0.010 (0.017) 

Hh located at edge of forest (dummy) 0.201 (0.136)  -0.034 (0.492)  0.173*** (0.040) 

Regency dummy (ref. Batanghari)  
 

 
 

 

Bungo 0.260 (0.264)  -1.530 (1.136)  -0.160* (0.086) 

Muaro Jambi 0.252* (0.143)  0.954 (0.778)  -0.195*** (0.072) 

Sarolangun 0.064 (0.246)  -1.228 (1.315)  -0.296** (0.129) 

Tebo 0.197 (0.217)  -1.744* (0.940)  -0.254*** (0.080) 

Village random effect  
 

 
 

 

Intercept 8.678*** (0.316)  4.860*** (1.346)  -0.507*** (0.150) 

      

No. Obser. 793  793  793 

AIC -310.237  1908.9  -2526.2 

Notes: Coefficients with standard errors in parentheses are reported. Asterisks represent p-values, *** <0.01, ** <0.05 

and *<0.1. NA – not applicable; all estimations with geosplines. Hh/hh – household head.  

 



 

 

When comparing all three columns in Table 3, some overall patterns emerge for the socioeconomic variables. 

Interestingly, official land titles, farm size, and specialization in oil palm production seem to be the important 

factors determining high-yield and economically successful oil palm farms3. This is particularly relevant 

because we investigate a perennial agricultural management system. This type of plantation system requires 

massive initial investments while yields only increase with time. Thus, secure land property rights are 

fundamental in terms of collateral when borrowing money from a formal institution, which is often a challenge 

for smallholder farmers (Fenske, 2011; Lawry et al., 2017). This is also interesting when considering that a 

location at a forest margin also improves yields and output prices. Since previous research suggests that this 

could be related to harvesting short-term gains from deforestation without official land titles (McCarthy, 2010; 

Krishna et al., 2017c; Kubitza et al., 2018b), easier access to strong land property rights might be a good policy 

strategy to improve farm investments and productivity while also preventing deforestation. Furthermore, our 

results highlight the importance of urban centers, particularly when it comes to input use and oil palm prices. 

However, in the Jambi context, regional towns appear to be more relevant for agricultural development than 

the province capital Jambi. Our results, thus, support claims in previous studies that differentiation of different 

types of towns is necessary, and smaller towns are often more important for the agricultural sector than large 

urban centers (Steinhübel and von Cramon-Taubadel, 2021). 

Finally, the remaining question is whether the coefficients we discussed so far (Table 3) capture all the spatial 

variation presented in Figure 2. By comparing Figure 2 and in Figure 3, we observe a reduction in the 

magnitude of estimated coefficients (scale on the right of each map). While it appears that almost all of the 

spatial variation in yields (scale extremes: 0.77 → 0.01; Figure 2a and Figure 3a) is controlled for, we observe 

a reduction of only 40 to 60 percent for input use and output prices (scale extremes: 1.79 → 0.75 and 0.25 → 

0.15, respectively; Figure 2b/c and Figure 3b/c). In Figure 3b., red/blue areas still show areas where input 

spending is up to 144 percent above or below the sample mean. For output prices, the variation ranges from 

16 percent above and below the sample mean. This means that—at least for input use and output prices—the 

spatial clusters in Figure 2 are not entirely explained by our control variables, and some structured spatial 

heterogeneity remains unexplained. 

                                                      

3 For input use and output prices we also observe positive effects of education. However, signicance levels are slightely 

above conventional thresholds (𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  0.128 and 𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  0.125, respectively). 



 

 

 

Figure 3. Estimated geosplines based on Equation (2), a) oil palm yields, b) input use, c) output price. 
Notes: Areas colored in red indicate above-mean yields per hectare (a), higher input use (b), and higher output prices (c), 

while those in darker blue, clusters of lower yield, input use, and output prices. The scales represent coefficient estimates. 

Outcome variables are log-transformed. Regency names (depicted in Figure 1) are left out for clarity. 

 

Moreover, the key to explaining the much higher reduction of spatial variation in oil palm yields is the village 

random effects. If we estimate Equation (2) without the village controls, the fixed effect estimates are robust 



 

 

(Table A.1). However, while Figures 3b-c and Figures A.2b-c show mainly the same patterns, the estimated 

geosplines for yields reveal a significant difference (Figure 3a and Figure A.2a). Without the control on the 

village scale, the reduction of spatial variation is similar in all three dependent variables, i.e., also for yields 

only about 60 percent (scale extremes: 0.77 → 0.26; Figure 2a and Figure 3a) of the spatial variation is 

explained by the variables in Table 3/Table A.1. This allows for two conclusions. First, small-scale (i.e., 

village) factors are crucial in explaining variation in oil palm productivity, but some of these factors seem not 

to be captured by standardized socioeconomic or geographic variables (Table 2). This could be, for example, 

village-specific networks or extension services and local environmental conditions that affect oil palm yields. 

Second, from a technical/modeling point of view, controls for unobserved variability on small spatial scales 

seem to be sufficient to capture most of the remaining structured spatial heterogeneity in oil palm yields. 

The picture is different for input use and output prices. Especially, the spatial variation in farmers’ decisions 

concerning how much they invest in their oil palm production systems is still substantial. Thus, neither the 

village nor the regency scale seems appropriate to capture high or low input spending clusters. Instead, based 

on Figure 3b, it appears that a larger region, arching through the research area from the southern areas in the 

east and west to the north in the center, shows relatively high levels of input use.  

However, are there any other patterns not captured by the control variable that could explain such a cluster? 

There is always the possibility that large-scale environmental patterns (e.g., groundwater, soils) or 

infrastructure (e.g., roads, rivers), which are difficult to capture in standardized socioeconomic surveys, lead 

to remaining spatial variation. This also holds for institutions or services that are only available in spatially 

bound areas. We, for example, suspect that oil palm certification schemes might play a role in explaining the 

remaining clusters in input use. Unfortunately, we only have information on whether farmers are aware of the 

RSPO scheme but not if they participate. The dummy in Table 3 (column 2) is not statistically significant at 

conventional levels (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.221) but shows a large positive effect size and might be a signal that 

certifications schemes contribute to an above-average input spending behavior in this area. Furthermore, a 

significantly larger share of farmers in Batanghari (regency in the center of the research area) is aware of the 

RSPO scheme (Table 2), and one of the few RSPO-certified processing mills is located in the north of 

Batanghari. Based on a village questionnaire, we also know that three villages of our sample villages actively 

participate in the RSPO scheme. About 82 percent (44 out of 54 observations) of the farmers aware of the 



 

 

RSPO certification scheme in our sample are from these three villages. Nonetheless, this is only anecdotal 

evidence, and additional analysis is necessary to examine whether production systems differ in the area due to 

certification schemes. 

In any way, our results show that in two out of three dependent variables, standard explanatory variables and 

controls on different administrative scales are not enough to capture all of the structured spatial heterogeneity 

in oil palm systems in Jambi. Assuming that this is the case in other study areas, we have to think about what 

this means in general to analyze agricultural systems based on socioeconomic survey data.  

First, we have to expect biased estimates from a methodological perspective if we do not include spatially 

explicit controls such as geosplines in our analysis or at least test for remaining structured spatial patterns. In 

our study area, such a bias does not seem to be a big issue because the results of fixed effects presented in 

Table 3 match the finding of previous studies in Jambi (Mehraban et al., 2021). Nonetheless, it is difficult to 

assume the robustness of coefficient estimates a priori. 

Second, remaining unexplained spatial variation should also be considered in efforts to support agricultural 

development and environmental conservation. While focusing on the significant effects of proxies such as 

formal land titles in our case is important to inform policymakers, visualizing remaining spatial clusters of low 

yields, input use, and output prices (Figure 3) allows us to target disadvantaged regions specifically. It might 

also be necessary to engage qualitative approaches or work with grass-root organizations to understand the 

reasons for the lower levels of agricultural developments. 

 

5. Conclusion 

In this study, we have investigated the spatial heterogeneity in perennial agricultural systems—a research 

question, so far, only attempted for annual cropping systems. To do so, we have applied a Structured Additive 

Regression framework in order to detect a distinct spatial variation and explore the association between 

socioeconomic/geographic covariates and oil palm yield, input use, and output price. We have used a primary 

data set of 793 smallholder households in Jambi province, Indonesia. Moreover, the estimation of so-called 

geosplines has allowed us to control for unexplained spatial patterns in smallholder oil palm systems and to 

visualize remaining spatial heterogeneity after the inclusion of all standard covariates. 



 

 

Our findings can be summarized as follows. First, farm characteristics that indicate long-term stability and a 

specialization in oil palm production are associated with significantly higher oil palm yields, input use, and 

realized output prices. In this context, we have found the strongest effects (in statistical significance and 

magnitude) for the possession of formal land titles and plantation age or the size of the farm play a role. 

Furthermore, our results suggest that, in the absence of a formal land title, smallholders might be more likely 

to cut natural forests to gain short-term benefits from higher oil palm yields due to improved soil conditions. 

Second, we have discovered that proximity to market centers is associated with significantly higher input use 

and realized output prices in oil palm (perennial) management systems, consistent with the findings from the 

studies conducting spatial analyses of annual cropping systems. Note that, in this context, smaller towns seem 

to be more important than proximity to the province capital Jambi. This means that for cropping systems with 

a longer planning horizon, market access seems to be crucial for smallholders to intensify/commercialize their 

production. 

Third, the estimated geosplines in our empirical analysis have shown that standard covariates explain only 40-

60 percent of the original spatial heterogeneity in oil palm yields, input use, and output prices. This includes 

standard spatial proxies such as distance to the closest town or mill as well as geographic variables such as 

altitude or the location at the edge of a forest. Further, we have shown that control for unexplained variation 

at the village scale (i.e., village random effect) can correct most of the remaining spatial variation for oil palm 

yield. However, significant spatial patterns in input use and output prices remain, even after controlling for 

different administrative scales (village, regency) and standard explanatory variables. We conclude that, even 

if we could not explain the origins of these remaining spatial variations, we are able to detect them using the 

geosplines, preventing estimation bias. Thus, visualization of spatial clusters might be helpful for more targeted 

policy initiatives to improve oil palm management systems. 

Finally, we suggest that future quantitative studies might combine qualitative data to fully understand the 

remaining spatial variation and validate and strengthen our findings both in the context of annual or perennial 

crops and in the context of Indonesia or other tropical regions. We also suggest that intervention programs 

collaborate with grass-root organizations to identify disadvantaged farmers and account for the observed 

spatial variation. Also, all results reported in this study are based on a cross-sectional data set. Hence, 

everything we present may not refer to causal relationships, which should be considered when interpreting our 



 

 

findings. Especially when considering the longer planning horizon of perennial cropping systems, a panel 

analysis including explicit spatial predictors such as geosplines could be useful to obtain a more nuanced 

understanding of the drivers of spatial clusters.  
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Appendix 

 

Figure A.1: Estimated one-dimensional splines from the model without geosplines. (Note: CI: Gray = 90 

percent and dark gray = 95 percent)  

  



 

 

 

Figure A.2. Estimated geosplines based on Equation (2) excluding village random effects, a) oil palm yields, 

b) input use, c) output price. 
Notes: Areas colored in red indicate above-mean yields per hectare (a), higher input use (b), and higher output prices (c), 

while those in darker blue, clusters of lower yield, input use, and output prices. The scales represent coefficient estimates. 

Outcome variables are log-transformed. Regency names (depicted in Figure 1) are left out for clarity. 

  



 

 

Table A.1. Estimation results, Equation (2), excluding village random effects 

 

(1) 

Yield /ha  

(log, kg) 

 (2) 

Input use / ha (log, 

'000 IDR) 

 (3) 

Output price /kg (log, 

'000 IDR) 

Socio-economic variables      

Age of hh head (years) 0.001 (0.002)  -0.001 (0.008)  0.0003 (0.001) 

Education hh head (years) 0.007 (0.005)  0.032 (0.022)  0.002 (0.001) 

Household size (count) 0.009 (0.012)  -0.066 (0.049)  0.0012 (0.003) 

Village type (dummy, trad. /transm.) 0.057 (0.088)  -0.183 (0.327)  -0.016 (0.024) 

Total land owned (log, ha) 0.007 (0.036)  0.037 (0.146)  0.038*** (0.009) 

Input cost / ha (log, ‘000 IDR) 0.042*** (0.009)  NA  0.005** (0.002) 

Harvest /ha (log, kg) NA  NA  0.043*** (0.009) 

Number of plots (count) 0.031 (0.022)  0.163* (0.087)  0.008 (0.005) 

Age of plantation (years) 0.031*** (0.004)  0.017 (0.015)  0.001 (0.001) 

Share systematic land title 0.102* (0.055)  0.508** (0.217)  0.035** (0.013) 

Cultivate other crops (dummy) -0.0002 (0.050)  -0.698*** (0.196)  -0.033*** (0.012) 

Aware of RSPO certification (dummy) -0.035 (0.098)  0.499 (0.387)  0.016 (0.024) 

      

Geographic variables      

Distance to nearest city (Km) -0.005 (0.006)  -0.036 (0.023)  -0.004** (0.002) 

Distance to Jambi city (Km) 0.003 (0.004)  0.026* (0.014)  0.001 (0.001) 

Distance to nearest mill (Km) -0.002 (0.007)  0.010 (0.023)  -0.001 (0.002) 

Altitude (meter above sea level) -0.003** (0.001)  -0.002 (0.005)  -0.0003 (0.0003) 

Access to a river (dummy) 0.017 (0.068)  0.303 (0.262)  -0.010 (0.017) 

Hh located at edge of forest (dummy) 0.236* (0.135)  -0.0003 (0.481)  0.172*** (0.039) 

Regency dummy (ref. Batanghari)  
 

 
 

 

Bungo 0.238 (0.309)  -1.586 (1.131)  -0.160* (0.085) 

Muaro Jambi 0.537** (0.229)  1.148 (0.785)  -0.196*** (0.071) 

Sarolangun 0.064 (0.402)  -1.272 (1.355)  -0.294** (0.127) 

Tebo 0.054 (0.268)  -1.882** (0.944)  -0.253*** (0.079) 

      

Intercept 8.490*** (0.400)  4.785*** (1.363)  -0.508*** (0.148) 

      

No. Obser. 793  793  793 

AIC -288.41  1909.54  -2526.33 

Notes: Coefficients with standard errors in parentheses are reported. Asterisks represent p-values, *** <0.01, ** <0.05 

and *<0.1. NA – not applicable; all estimations with geosplines. Hh – household head.  

 

 


