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ABSTRACT 

This study was undertaken to assess the utility of remotely sensed net primary productivity (NPP) data to 
measure agricultural sustainability by applying a new methodology that captures spatial variability and 
trends in total NPP and in NPP removed at harvest. The sustainable intensification of agriculture is widely 
promoted as a means for achieving the Sustainable Development Goals (SDGs) and transitioning toward a 
more productive, sustainable, and inclusive agriculture, particularity in fragile environments. Yet critics 
claim that the 17 SDGs and 169 targets are immeasurable and unmanageable. We propose adoption of 
satellite-estimated, time-series NPP data to monitor agricultural intensification and sustainability, as it is 
one indicator potentially valuable across several SDGs. To illustrate, we present a unique monitoring 
framework and a novel indicator, the agricultural appropriation of net primary productivity (AANPP) and 
analyze spatial trends in NPP and AANPP across the continent of Africa. AANPP focuses on the 
proportion of total crop NPP removed at harvest. We estimate AANPP by overlaying remotely sensed 
satellite imagery with rasterized crop production data at 10-by-10-kilometer spatial resolution; we explore 
variation in NPP and AANPP in terms of food and ecological security. The spatial distribution of NPP 
and AANPP illustrates the dominance of cropping systems as spatial drivers of NPP across many regions 
in West and East Africa, as well as in the fertile river valleys across North Africa and the Sahel, where 
access to irrigation and other technological inputs are inflating AANPP relative to NPP. A comparison of 
2000 and 2005 datasets showed increasing AANPP in African countries south of the Sahara—particularly 
in Mozambique, Angola, and Zambia—whereas NPP either held stable or decreased considerably. This 
pattern was especially evident subnationally in Ethiopia. Such trends highlight increasing vulnerability of 
populations to food and ecological insecurity. When combined with other indicators and time-series data, 
the significance of NPP and the capacity of spatially explicit datasets have far-reaching implications for 
monitoring the progress of sustainable development in a post-2015 world. 

Keywords:  net primary productivity, agricultural appropriation of net primary productivity, 
Sustainable Development Goals, sustainable intensification of agriculture, spatial 
allocation production model 
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1.  INTRODUCTION 

Intensive agriculture and inefficiencies in farming contribute to climate change and other global 
environmental challenges, increasingly undermining long-term food and ecological security (Foley et al. 
2011). At the same time, as the world’s growing population continues to demand more from the planet’s 
resources, there is little area for agriculture expansion (Lambin and Meyfroidt, 2011). In light of these 
challenges, business-as-usual trajectories for marginal increases in crop yields are outdated. Rather, the 
sustainable intensification of agriculture—increased production per unit land while conserving natural 
resources and ecosystem services—may provide the solution to sustainably produce much more food on 
the same number of hectares; thus, it is key for the next green revolution in agriculture (Pretty, Toulmin, 
and Williams 2011; Glover, Reganold, and Cox 2012; Garnett et al. 2013; Campbell et al. 2014). 
Sustainable intensification requires a radical rethinking of our global food systems (Campbell et al. 2014) 
and, we argue, an equally radical approach to data.  

The UN Sustainable Development Goals (SDGs) are poised to turn the tide in post-2015 
development by targeting sustainable agriculture and food security, climate change, biodiversity and 
ecosystems services, and poverty and nutrition, to name a few. Achieving these goals will largely depend 
on progress in agriculture. The Food and Agriculture Organization of the United Nations (FAO) promotes 
the sustainable intensification of agriculture in globally relevant policy agendas as a means for achieving 
the SDGs and transitioning toward a more “productive, sustainable and inclusive agriculture” (FAO 
2016). What remains challenging, however—and with no shortage of opinions on what defines 
sustainability (Binder, Feola, and Steinberger 2010)—is how to measure and manage the 17 SDGs and 
169 targets (Davis et al. 2015). However, one variable potentially valuable across several SDGs, with 
crosscutting implications for decision support in terms of agricultural development and land use 
considerations, is net primary productivity (NPP).  

Since the inauguration of the SDGs in 2015, the United Nations has proposed 230 global 
indicators to measure progress toward goals and targets,1 though most reporting will undoubtedly be at the 
national level. Each country will need to customize its own suite of indicators that reflect the nation’s 
national interests and data capacities. Moreover, the United Nations has been stressing the vital role of 
geospatial data in achieving the SDGs. Indeed, along with country statistics and nationally representative 
household data, alternative data sources, such as satellite earth observation, are expected to play a major 
role in the 2030 agenda by closing critical data gaps; this is particularity important for traditionally data-
poor and hard-to-reach places (see, for example, Joppa et al. 2016). Here we propose the adoption of 
satellite-estimated, time-series NPP data to monitor agricultural intensification and sustainability—a 
global “earthworm indicator” of sorts for monitoring human activity on the planet. NPP has implications 
for the environment, including climate change mitigation, as well as for food security, human well-being, 
and livelihoods. As such, it is a touchstone for many SDGs. We do not suggest using NPP as a solo 
indicator for small-scale programs or snapshot assessments, but rather as part of a package of critical 
indicators with crosscutting implications for future global development. The challenge, however, is how 
stakeholders and researchers can manipulate NPP data to suit geographically dependent program needs 
and assessments, such as the SDGs and similar regionally tailored programs (such as the African Union’s 
Malabo Declaration2). 

NPP is central to terrestrial ecosystem processes, both biochemically (nitrogen and carbon 
cycling) and physically (soil formation and structure). It is also important in terms of biodiversity, food 
and soil webs, plant productivity and biomass, and climate change mitigation and resilience (Field 2001; 
Roy, Mooney, and Saugier 2001; Haberl et al. 2004, 2007; Lal 2004; Houghton et al., 2012; Campbell et 
al. 2014). Yet globally, Niedertscheider et al. (2016) found that two-thirds of NPP from croplands is well 
below native NPP potential, particularly in developing, (sub)tropical regions. On the other hand, 
                                                      

1 See http://unstats.un.org/sdgs/. 
2 See http://pages.au.int/caadp/documents/malabo-declaration-accelerated-agricultural-growth-and-transformation-shared-

prosper. 
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agricultural sustainability and productivity massively surpass natural NPP on irrigated drylands and in 
many industrialized temperate regions, creating an unsustainable cosmos of resource overconsumption. A 
bundle of indicators is needed to monitor the different domains of agricultural production and 
sustainability in the context of sustainable intensification and the SDGs. However, from economics and 
social welfare to productivity and environment, spatially explicit data are currently underused for 
monitoring and evaluating the sustainable intensification of agriculture and land-use efficiencies on the 
large scale (Azzarri et al. 2016). Global NPP reflects myriad farm-generated outcomes that underscore 
multiple dimensions of sustainability. 

Among the variables proposed to measure the scale of human activity on the planet, the human 
appropriation of net primary productivity (HANPP) is arguably the most useful (Field 2001). HANPP 
aggregates additional indicators with NPP to help more fully understand the impact of human activity on 
the planet (Field 2001; Roy, Mooney, and Saugier 2001; Haberl et al. 2004, 2007). HANPP reflects the 
total amount of NPP removed or altered by humans, which is consequently unavailable to other 
organisms in an ecosystem, such as when humans convert land to agroecosystems and harvest plant 
material or otherwise divert natural capital to human consumption (Haberl et al. 2004, 2007). Not 
surprisingly, increasing HANPP is linked to decreasing biodiversity and ecosystem function (Haberl et al. 
2004), both of which are widely considered underlying indictors of sustainability (Foley 2005). HANPP 
currently accounts for about a quarter of the world’s potential NPP, with nearly half (12 percent) 
represented by crop harvests (Haberl et al. 2007). At current rates of human activity, HANPP is expected 
to reach well over 50 percent of global NPP by 2050 (Haberl et al. 2004). Improved efficiencies in crop 
production and technological changes can, however, result in considerable biomass (NPP) increases 
overtime (Foley et al. 2011)—and not necessarily at the expense of increased HANPP (Krausmann et al. 
2013).  

While earlier studies have estimated NPP and HANPP for terrestrial ecosystems (Field 2001; 
Roy, Mooney, and Saugier 2001; Haberl et al. 2004, 2007), the utility of satellite measurements for 
indicators of agricultural sustainability has not been widely implemented. This paper illustrates a unique 
monitoring framework using a novel indicator—the agricultural appropriation of net primary productivity 
(AANPP)—with potential value across disciplines. AANPP is a less formidable adaptation of HANPP 
that focuses on agricultural activity by capturing the proportion of total crop NPP removed at harvest. 
This paper further demonstrates the capacity of remotely sensed satellite imagery by overlaying it with 
rasterized crop production data at fine, 10-by-10-kilometer spatial resolution. Finally, we explore spatial 
variation in NPP and AANPP across the continent of Africa from 2000 to 2005 in the context of food and 
ecological security. Whereas previous estimates of HANPP were based on national-level crop production 
statistics and other land-use variables, such as timber harvest, our approach focuses on the appropriation 
of NPP to agriculture and integrates spatially disaggregated subnational crop production statistics data 
(You and Wood 2006; You, Wood, and Wood-Sichra 2009; Wood et al. 2014) into estimates of 
agriculturally appropriated NPP—thereby allowing for aggregation of data at the subnational level and 
across country borders. When combined with other indicators and time-series data, the significance of 
NPP and the capacity of spatial datasets have far-reaching implications for monitoring post-2015 
sustainable development.  
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2.  MATERIALS AND METHODS 

Measuring Net Primary Productivity 
Although direct measurements of NPP at the global scale are not possible, there are many excellent 
models based on physiological principles and global terrestrial dynamics (Cramer et al. 1999). Models 
range from simple regressions between climatic variables to complex mechanistic simulations of 
biophysical and ecophysical processes. These models capture one of three methodologies: (1) carbon 
fluxes based on a given vegetation structure, (2) both carbon fluxes and vegetation structure, and (3) 
remotely sensed satellite data. Each model produces global estimates of NPP ranging from 44.4 to 66.3 
billion tons of carbon per year (Cramer et al. 1999). Satellite-derived datasets are particularly useful as 
they provide mechanisms for estimating, monitoring, and evaluating spatial and temporal variations 
within terrestrial ecosystem productivity (Crabtree et al. 2009).  

For our estimates of NPP, we use MODIS (moderate-resolution image spectrometer) NPP 
product (MOD17A3), developed by Numerical Terradynamic Simulation Group at the University of 
Montana (Heinsch et al. 2003a). The MOD17A3 algorithm uses a combination of remotely sensed data 
from the MODIS sensor, climate models, and biome-specific parameters to calculate annual global NPP 
at 1-by-1-kilometer resolution. We processed this data to match the spatial and temporal extents of a 
spatially disaggregated crop production dataset (You and Wood 2006; You, Wood, and Wood-Sichra 
2009; Wood et al. 2014) to calculate AANPP at 5 arc-minute spatial resolution.3 A more detailed 
description of the MOD17A3 product and a conceptual model of the algorithm are available in the 
supporting information (Appendix Box A.1 and Figure A.1), based on Heinsch et al. (2003). 

Measuring Crop Production 
The grid-based crop production dataset used in our model was acquired from MapSPAM (You et al. 
2014). The spatial production allocation model (SPAM) provides global, spatially disaggregated 
subnational crop production statistical datasets on production, area, value of production, and yield for a 
variety of crops and crop groups (You and Wood 2006; You, Wood, and Wood-Sichra 2009; Wood et al. 
2014). Earlier versions of the database, such as SPAM2000 (circa 2000), included 20 crops, whereas the 
updated SPAM2005 database (circa 2005) includes 42 crops. For a comparison between 2000 and 2005, 
the SPAM2005 database was modified to match the SPAM2000 database by removing crops and crop 
types not present in SPAM2000, representing approximately 80 percent of the world’s crop production 
(FAO 2015). Production data, available in metric tons, were converted to units of carbon to be used with 
the MODIS NPP data in calculations of AANPP. Parameters used to convert crop production in metric 
tons to carbon included moisture content, harvest index, and aboveground biomass for each crop and crop 
type with conversion factors, values of which were adapted from Prince et al. (2001) and Monfreda, 
Ramankutty, and Foley (2008). This conversion model calculated the mass of dry carbon removed from 
the landscape due to harvest of crop. A more detailed description of the SPAM processing workflow and 
a list of individual crop parameters are available in the supporting information (Appendix Box A.2 and 
Table A.2). 
  

                                                      
3 The 5 arc-minute, often referred to as 10 kilometers, is one of the most commonly used, standard spatial resolutions in 

global- and regional-scale geospatial datasets and modeling analyses on grid-based platforms. For example, FAO’s Global Agro-
ecological Zone database (http://gaez.fao.org), University of Frankfurt’s MIRCA database (https://www.uni-
frankfurt.de/45218023/MIRCA), and University of Minnesota’s EarthStat database (http://www.earthstat.org) use the same 
spatial resolution, facilitating harmonization and interoperability across datasets. There are 368,120 grid cells at this resolution in 
Africa’s land area. 
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Calculating Agricultural Appropriation of Net Primary Productivity 
MODIS and SPAM data were used to calculate AANPP. The theoretical calculation for HANPP is 

𝑁𝑁𝑁𝑁𝑁𝑁0 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 + 𝑁𝑁𝑁𝑁𝑁𝑁ℎ +  ∆𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙 , 

where 𝑁𝑁𝑁𝑁𝑁𝑁𝑎𝑎𝑙𝑙𝑡𝑡 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 + 𝑁𝑁𝑁𝑁𝑁𝑁ℎ and 𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁ℎ +  ∆𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙 (Haberl et al. 2004, 2007). In this 
formula, 𝑁𝑁𝑁𝑁𝑁𝑁0 is the potential biomass in the absence of human influence. This is generally estimated 
using dynamic global vegetation models at large scales and is beyond the capacity of the present study. 
𝑁𝑁𝑁𝑁𝑁𝑁𝑎𝑎𝑙𝑙𝑡𝑡 is the actual biomass produced on the landscape and is represented by the MOD17A3 NPP 
product. 𝑁𝑁𝑁𝑁𝑁𝑁ℎ  is the total biomass removed or destroyed due to crop harvests and was derived from 
SPAM data. 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 is the total biomass left after harvest and was deduced from 𝑁𝑁𝑁𝑁𝑁𝑁𝑎𝑎𝑙𝑙𝑡𝑡  and 𝑁𝑁𝑁𝑁𝑁𝑁ℎ. 
∆𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙 is the difference in NPP due to human-induced land-use change or land-cover alterations; it was 
inherent in the MODIS data as it was based on up-to-date land-use data (Appendix Table A.1). Thus, to 
calculate AANPP as a proportion of available NPP, the results from the SPAM processing were divided 
by the results from the MODIS processing. This created a 10-by-10-kilometer grid of AANPP values 
across Africa. A more detailed account of MODIS and SPAM data processing for AANPP estimations is 
available in the supporting information (Appendix Box A.2 and Figure A.2). 

AANPP values were reaggregated to the country level for Africa and the level-2 administration 
level (zone) for Ethiopia. These values were plotted against the average NPP over the same spatial and 
temporal extents, creating a quadrant graph of high NPP / high AANPP, high NPP / low AANPP, low 
NPP / low AANPP, and low NPP / high AANPP scenarios, providing an indication of both the crop 
production potential (NPP) and crop production intensity (AANPP). For a subset of countries in Africa 
south of the Sahara and a subset of zones in Ethiopia, these plots were created for both the 2000 and 2005 
datasets. By measuring the direction and magnitude of change for each area, we can see the trajectory of 
agricultural production during the period studied. 

Data Assumptions and Limitations 
This study relies on the integration of two large datasets and assumes that both are accurate and reliable. 
Both datasets are created through complex models with numerous parameters to estimate respective 
outputs. The SPAM crop production data rely heavily on agricultural production statistics collected from 
a variety of sources at a variety of scales. Data are disaggregated using specific crop parameters, such as 
crop-specific suitability, crop price, and cropland extent, to create spatially explicit coverage of crop 
production. SPAM includes approximately 80 (circa 2000) to 99 percent (circa 2005) of the earth’s total 
crop production, as reported by FAO. In addition, SPAM excludes crucial components, such as livestock-
related production statistics, required for a full calculation of AANPP. 

There are also several simplifying assumptions required in the MODIS model for calculating the 
gross primary productivity (GPP) and NPP (Heinsch et al. 2003b). First, the algorithm relies heavily on 
an underlying land-cover layer from which biome-specific parameters are used to calculate NPP in 
combination with remotely sensed data. It is assumed that the underlying land-cover layer is accurate. In 
addition, although these biome-specific parameters are updated based on empirical data collected from 
ground stations, they do not vary spatially or temporally to account for within-biome variations and 
seasonal variations. For example, within this model, a semiarid grassland in Kenya is treated the same as 
a tall-grass prairie in the Midwestern United States. Second, the leaf area index (LAI) and the fraction of 
photosynthetically absorbed radiation (FPAR) are required to calculate GPP. These values are produced 
with the MOD15 algorithm (another MODIS product) and are calculated based on an eight-day 
composite, using selection criteria whereby for more than the eight days, the maximum FPAR is used. 
This day is then used to measure the LAI value for the respective pixel. Thus, although primary 
productivity is calculated daily, it is assumed that FPAR and LAI do not vary over the eight days. The 
MOD17 algorithm also requires daily meteorological data, including average minimum temperature, 
incident photosynthetically active radiation and specific humidity. These data are estimated based on a 
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global circulation model, incorporating both ground and satellite data and provided through NASA’s Data 
Assimilation Office. The resolution of these data is at 1.00° x 1.25°. It is assumed that this resolution does 
not vary over the extent of each cell and thus can be reasonably scaled to a finer resolution for the 
MODIS algorithm. 

The end product requires the conversion of the SPAM production data to appropriate units 
compatible with the MODIS NPP data. The model for conversion uses a number of parameters estimated 
for each crop and assumes spatial and temporal homogeneity of each parameter for each crop. Although 
the values of each parameter for each crop are relatively well established in the literature (Appendix Table 
A.2), there is variation that cannot be accounted for. For example, the harvest index will vary based on 
available technology and increases with improved practices. Likewise, moisture content of crops may 
vary with growing condition. Even across a regional scale, such as Africa, it is likely that these 
parameters will vary.  

Despite simplifying assumptions and data limitations, these are generally considered the most 
accurate models available. Both datasets are evolving to incorporate the most up-to-date and accurate 
parameters as accuracy assessments and validation continues. 
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3.  RESULTS 

Aggregated at the continent level, Africa’s terrestrial ecosystems produced a total of 12 billion tons of 
carbon in 2005 (Table 3.1), agreeing with earlier estimates of NPP (Haberl et al. 2007). Of this, crop 
production accounted for approximately 484 million tons of removable carbon at harvest, equivalent to 4 
percent AANPP or one-third of the global share. Aggregated by country, AANPP ranged from less than 1 
to 93 percent, with a mean of 9 percent (Table 3.1).  

Table 3.1 Net primary productivity (total + crop) and agricultural appropriation of net primary 
productivity in Africa by country 

Country Crop production (kg carbon) NPP (kg carbon) AANPP (%) 
Algeria 13,077,044,224 132,080,093,649 9.90 
Angola 5,300,852,736 1,042,959,105,489 0.51 
Benin 4,361,645,056 39,621,687,894 11.01 
Botswana 95,556,384 174,172,273,781 0.05 
Burkina Faso 5,910,040,064 36,279,922,934 16.29 
Burundi 4,085,306,112 25,527,699,364 16.00 
Cameroon 13,525,407,744 384,820,836,678 3.51 
Central African Rep. 1,354,560,000 343,709,644,023 0.39 
Chad 3,507,989,248 56,678,896,697 6.19 
Congo 1,114,149,632 381,559,624,776 0.29 
Côte d’Ivoire 21,768,419,328 234,442,106,720 9.29 
Dem. Rep. Congo 14,313,029,632 2,371,659,366,486 0.60 
Djibouti 3,597,960 1,243,812,793 0.29 
Egypt 55,513,710,592 59,549,155,673 93.22 
Eq. Guinea 312,696,352 27,921,238,580 1.12 
Eritrea 447,789,824 7,518,212,914 5.96 
Ethiopia 26,429,771,776 617,336,788,033 4.28 
Gabon 585,660,544 304,018,441,917 0.19 
Gambia 450,204,128 2,892,236,341 15.57 
Ghana 19,901,229,056 134,498,789,552 14.80 
Guinea 7,545,819,648 82,206,859,210 9.18 
Guinea-Bissau 767,772,544 7,217,255,262 10.64 
Kenya 11,987,146,752 252,914,150,553 4.74 
Lesotho 199,639,600 20,075,829,922 0.99 
Liberia 1,113,280,384 83,840,736,894 1.33 
Libya 1,992,906,752 37,189,949,453 5.36 
Madagascar 10,329,387,008 766,060,973,532 1.35 
Malawi 5,710,752,768 77,500,375,221 7.37 
Mali 6,518,140,928 27,893,521,413 23.37 
Mauritania 268,296,384 5,928,146,469 4.53 
Morocco 19,751,047,168 107,540,151,632 18.37 
Mozambique 5,727,201,280 644,540,290,987 0.89 
Namibia 330,185,248 196,132,626,678 0.17 
Niger 5,367,151,104 17,591,344,831 30.51 
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Table 3.1 Continued 

Country Crop production (kg carbon) NPP (kg carbon) AANPP (%) 
Nigeria 100,701,831,168 311,159,702,323 32.36 
Rwanda 5,424,345,088 28,108,194,807 19.30 
South Sudan 1,399,053,568 272,566,157,058 0.51 
Sao Tome and Principe 91,992,520 720,119,138 12.77 
Senegal 3,292,512,256 27,577,470,221 11.94 
Sierra Leone 2,926,090,496 35,140,375,865 8.33 
Somalia 934,867,328 85,449,769,763 1.09 
Somaliland 55,293,608 15,035,099,721 0.37 
South Africa 29,474,162,688 650,183,059,805 4.53 
Sudan 10,730,852,352 98,726,721,538 10.87 
Swaziland 740,992,192 16,895,793,362 4.39 
Tanzania 18,338,957,312 723,911,352,578 2.53 
Togo 2,363,777,280 25,183,465,263 9.39 
Tunisia 7,712,226,816 43,389,964,858 17.77 
Uganda 23,644,829,696 242,385,250,092 9.76 
Zambia 2,738,928,128 610,680,089,053 0.45 
Zimbabwe 3,567,263,232 225,212,272,661 1.58 

Africa Total 483,805,363,688 12,117,447,004,455 3.99 
Source:  Authors. 
Notes:  AANPP = agricultural appropriation of net primary productivity; NPP = net primary productivity. 

The spatial distribution of NPP in Africa is largely determined by rainfall (Thornton 2014), as 
shown in Figure 3.1a and 3.1b. NPP was greatest south of the Sahel and north of the Tropic of Capricorn, 
particularly in Central Africa. In more arid areas, such as Southern and North Africa and across the plains 
of East Africa, NPP was relatively low, as expected. The spatial distribution of crop NPP, on the other 
hand, is patchier throughout the continent (Figure 3.1b). Crop NPP was relatively high along the coastline 
and inner coastal regions of West Africa, across the southern edges of the Sahel, throughout the African 
Great Lakes region, and down the East African Rift. In some areas where total NPP was high, crop NPP 
was low, such as in Central Africa, most notably in the Democratic Republic of the Congo. 

AANPP values were largely moderate to low throughout the continent, with a spatial pattern 
closely resembling crop NPP (Figure 3.1c). Relatively high AANPP was most notably concentrated 
throughout West African countries and continued in a diluted effect across the continent along the Sahel, 
with patchier clusters in the African Great Lakes region and along the East African Rift. In Southern and 
Central Africa and many countries in the east, such as in the Horn of Africa, AANPP was low to 
moderate as compared with other regions in Africa. Several arid countries in North and West Africa along 
the Nile River and in the Sahel had high AANPP despite relatively low regional rainfall—for example, in 
Egypt, AANPP approached 100 percent and exceeded all other country values by dozens of percentage 
points (Table 3.1 and Figure 3.1c). In other words, NPP in Egypt and in many of the more northern 
African countries is almost entirely, or majorly, for crop allocation and human consumption.  
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Figure 3.1a Annual precipitation gradient 

 
Source:  You et al. 2014; Hijmans et al. 2005. 

Figure 3.1b Subnational MODIS estimates of total 

 
Source:  Authors. 
Notes:  MODIS = moderate-resolution image spectrometer.
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Figure 3.1c Net primary productivity 

 
Source:  Authors. 

Figure 3.1d The percentage of NPP appropriated by agricultural harvest (AANPP) 

 
Sources:  Authors. 
Notes:  AANPP = agricultural appropriation of net primary productivity; NPP = net primary productivity. Crop production data 

are from the spatial production allocation model (SPAM; You et al. 2014) converted to NPP and expressed in kilograms 
of carbon per square meter (kg/m2) per year. AANPP is calculated as the percentage of total NPP appropriated by 
agriculture in a given pixel of 10 square kilometers (5 arc-minute) resolution. SPAM data include approximately 80 
(circa 2000) to 99 percent (circa 2005) of the earth’s total crop production (FAO 2015). These data embed economic 
assumptions such as population and market prices. We only included data for crops that were represented in both 
versions of SPAM. 
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For a more complete picture of the direction and magnitude of AANPP, we plotted countries 
according to four quadrants of varying levels of relatively high and low total NPP and AANPP (Figure 
3.2a). Most countries landed in the upper right quadrant: low NPP/high AANPP. Moreover, most 
countries skewed toward low total NPP. A comparison of 2000 and 2005 data for selected African 
countries south of the Sahara shows trends of increasing AANPP at variable rates, though some increases 
were slight (Figure 3.2b). Several countries (Mozambique, Angola, and Zambia) experienced substantial 
AANPP increases while NPP declined. Indeed, although AANPP was on the rise, NPP supply was largely 
stable or decreased considerably across Africa south of the Sahara during the five-year period studied. 
This pattern is especially evident at the subnational level (zone) in Ethiopia (Figure 3.2c). For example, 
with the exception of Sidama and Gedio, where AANPP declined considerably at slight increases in NPP, 
most zones in Ethiopia increased AANPP relative to NPP.  

Figure 3.2a Comparisons of agricultural appropriation of net primary productivity (percent log 
scale) versus net primary productivity (kg C m–2 yr–1) by quartile at the country level across 
Africa 

 
Source:  Authors. 
Notes:  AANPP = agricultural appropriation of net primary productivity; NPP = net primary productivity. Data points reflect 
annual means centered around 2005 data. 
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Figure 3.2b Comparison of 2000 and 2005 agricultural appropriation of net primary productivity 
(percent log scale) data versus net primary productivity (kg C m–2 yr–1) by quartile for selected 
African countries south of the Sahara 

 
Source:  Authors. 
Notes:  AANPP = agricultural appropriation of net primary productivity; NPP = net primary productivity. Disaggregated by year 

for 2000 (blue) and 2005 (red). 
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Figure 3.2c Comparison of 2000 and 2005 agricultural appropriation of net primary productivity 
(percent log scale) data versus net primary productivity (kg C m–2 yr–1) by quartile for select 
zones at the subnational, administration level 2 in Ethiopia 

  
Source:  Authors. 
Notes:  AANPP = agricultural appropriation of net primary productivity; NPP = net primary productivity. Disaggregated by year 

for 2000 (blue) and 2005 (red).  
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4.  DISCUSSION 

Improved efficiencies in crop production and technological changes can result in considerable NPP 
increases overtime (Foley et al. 2011) and not necessarily at the expense of increased AANPP 
(Krausmann et al. 2013). For example, large-scale farmer adoption of perennial crops, agroforestry, 
doubled-up legumes, rotations and intercropping, and other sustainable intensification practices currently 
promoted in multiple Feed the Future countries and beyond (such as Africa RISING4 and Cereal Systems 
Initiative for South Asia5) would presumably, collectively, increase NPP both spatially and temporally, 
while also enhancing yield improvements. Evidence of the use of global NPP from literature is scant, 
however, because NPP measurements have not been traditionally considered in international program 
assessments.  

In the present study, we contribute to the literature by introducing a new methodology and 
illustrating the utility of NPP data within a development framework for the African continent using 
remotely sensed NPP data and spatially explicit agricultural production data from 2000 and 2005. We did 
not include livestock or below-ground NPP data in our calculations, as they are more challenging to 
quantify. More research is needed because both are important to ecosystems and sustainability and, thus, 
would undoubtedly spike regional AANPP or NPP estimates (Roy, Mooney, and Saugier 2001; Haberl et 
al. 2004, 2007; Glover, Reganold, and Cox 2012). Moreover, although we did not consider ex ante 
modeling analysis, projections of NPP and AANPP at large scale in response to different treatments of 
sustainable intensification practices are undoubtedly feasible and may provide more on-the-ground 
decision-making support.  

Our results illustrate the dominance of cropping systems as spatial drivers of NPP across many 
regions in West and East Africa and in the fertile river valleys across North Africa and the Sahel, where 
access to irrigation and other technological inputs is inflating AANPP relative to NPP. Overall, Africa’s 
crop production accounts for approximately 484 million tons of removable carbon at harvest, equivalent 
to 4 percent AANPP, or one-third of the global share. In other words, Africa is producing one-third of the 
global NPP harvest. Lower AANPP estimates in Africa, particularly evident south of the equator, likely 
stem from prevailing low-intensity farming systems and poor below-ground plant productivity common 
in the region (Roy, Mooney, and Saugier 2001; Haberl et al. 2007; Niedertscheider et al. 2016).  

Trade-offs between NPP and AANPP represent a delicate balancing act that defines the 
sustainability and production potential of a place. For example, in areas with adequate rainfall where crop 
NPP falls below the natural potential and AANPP is also low, such as in Central African Republic, 
increases in both NPP and AANPP are necessary to meet desirable sustainable intensification outcomes 
(such as food and ecological security). On the other hand, in countries where AANPP and NPP are both 
relatively high on the continuum (high AANPP/high NPP), such as Rwanda and Burundi, agricultural 
intensification may be undermining sustainability, because the removal of biomass (energy) is keeping 
pace with NPP supply. In other words, natural capital in the form of plant biomass is essentially almost 
entirely diverted to human consumption. In a third scenario, where overall AANPP is high relative to 
NPP (high AANPP/low NPP), such as in Malawi and Ethiopia, energy availability is more constrained 
because agricultural demands are extracting from less-productive land (indicated by low overall NPP). In 
this scenario, ecosystem services may be enhanced by large-scale innovations that increase NPP without 
concurring a similar rate of increasing AANPP. This last example is an illustration of why both NPP and 
human derivatives of NPP are important to measure. In more extreme examples within this scenario, 
however, where rainfall is near negligible and cropping systems are highly dependent on external inputs 
(such as irrigation), as in Egypt, the choice of practices and innovations within a sustainable 
intensification framework is limited. The low AANPP/high NPP scenario is common in heavily forested 
Central Africa where, depending on land use, crop production is low compared to timber. That being said, 
                                                      

4 For more information on Africa Research in Sustainable Intensification for the Next Generation, see https://africa-
rising.net/. 

5 For more information on Cereal Systems Initiative for South Asia, see http://csisa.org/. 
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poorly reported crop production statistics are common in such regions of instability, highlighting the 
perennial need for ground-truthing. Although we cannot identify a particular sweet spot on the continuum, 
agrarian landscapes that fall within more productive and sustainable ranges will have relatively higher 
NPP to AANPP ratios (for example, in Madagascar). However, lower values of AANPP should be treated 
as a red flag as this may signal critical yield gaps and the need to intensify agriculture production.  

From 2000 to 2005, with few exceptions, changes in AANPP trended upward (albeit, sometimes 
slightly), whereas NPP either held stable or decreased considerably across Africa south of the Sahara. 
Several countries (Mozambique, Angola, and Zambia) experienced substantial AANPP increases while 
NPP declined. This pattern was especially evident subnationally in Ethiopia. For example, with the 
exception of Sidama and Gedio, where AANPP declined considerably at slight increases in NPP, most 
zones in Ethiopia increased AANPP relative to NPP. In other words, the magnitude of change in AANPP 
was appreciably larger than the mostly negative changes in NPP. Such trends in NPP and AANPP 
highlight increasing vulnerability of populations to food and ecological insecurity. Decision makers and 
other stakeholders need to carefully consider such trends when designing and supporting conservation and 
agricultural policies; these decisions makers include FAO, World Bank, and other nongovernmental 
organizations, as well as major donors and governmental bodies.  

Global NPP and agricultural appropriation of energy are critical indicators of sustainability if we 
are to adopt a radical rethinking of our food systems, particularly in the face of climate change and other 
global environmental challenges. We may not know Earth’s AANPP capacity for a sustainable future, but 
we do know that ensuring “a sustainable future entails sharing NPP with a great host of other species” 
(Field 2001). Such a paradigm shift requires an equally radical shift in data capacity and analyses. Large-
scale spatial datasets (such as www.harvestchoice.org) are increasingly available to the public, though 
they are grossly underused, especially the georeferenced socioeconomic data (Azzarri et al. 2016). By 
taking advantage of open-source datasets, the bang for the investment buck can be better realized in the 
form of progress toward sustainable development, particularly in highly impacted regions of the world 
where “good data” are harder to come by.  
 
  

http://www.harvestchoice.org/
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APPENDIX: SUPPORTING INFORMATION: MATERIALS AND METHODS 

Box A.1 Detailed MOD17A3 product 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source:  Authors. 
  

The MODIS (Moderate-Resolution Imaging Spectrometer) is a sensor onboard the Terra and 
Aqua Earth Observation System (EOS) satellites. The sensors acquire data in 36 spectral 
bands from .4μm to 14.4μm, at varying spectral resolutions from 250m2 to 1km2, and at a 
daily temporal resolution. A variety of products are derived from the MODIS data and are 
free and publicly available. The MOD17A2/A3 algorithm combines MODIS remote sensing 
data, large-scale meteorological data, and carbon cycle processing models (Fig. S1). Gross 
primary productivity (GPP) and net primary productivity (NPP) are estimated using the 
MOD17A2/A3 algorithms for the entire terrestrial surface at 1 km2 spatial resolution. For 
each cell, GPP is calculated daily and averaged over 8-day periods while NPP is calculated 
annually. In essence, within this algorithm NPP is a function of the absorbed 
photosynthetically-active radiation (APAR), and the light-use efficiency (ε) for different 
vegetation biomes. APAR is derived from the fraction of incident photosynthetically active 
radiation absorbed by the surface (FPAR) and the incident photosynthetically active radiation 
on the vegetative surface (PAR). The derivation is straightforward (APAR = IPAR * FPAR). 
FPAR data is acquired from the MODIS sensors while IPAR data is acquired from large-
scale meteorological data. The light-use efficiency (ε), or conversion efficiency is highly 
variable based on vegetation type. Thus, ε is derived based on biome specific estimated 
values as well as temperature and vapor pressure deficit constraints. APAR and ε are 
combined to calculate daily estimates of GPP (kg C day-1). The maintenance respiration 
costs (MR) for leaves and roots are also calculated on a daily basis and subtracted from GPP 
to calculate an estimate for net photosynthesis. This product is then combined with annual 
maintenance respiration estimates for woody material estimates and annual growth 
respiration (GR) estimates to compute annual NPP. NPP = (annual sum of daily net 
photosynthesis) – (Livewood MR) – (Leaf GR) – (Root GR) – (Livewood GR) – (Deadwood 
GR). (See (Heinsch et al., 2003) for a full description of the algorithms and explanations of 
individual parameters.). The MOD17A2/A3 algorithms heavily rely on a Biome Parameter 
Look-UP Table (BPLUT), with the biomes generated from the MODIS land cover product, 
MOD12Q1. This product employs Boston University’s UMD classification scheme (Table 
A.1). Each 1 km2 grid cell has a calculated NPP value in Kg C km-2 yr-1. The MODIS 
sensor was launched on the Terra EOS satellite in 1999 and on the Aqua EOS satellite in 
2002. Thus, data is available from 2000 onwards. Furthermore, the MOD17 product is an 
evolving dataset, and as improvements are made to the algorithms, the series is re-run in its 
entirety. The current version is 5.0. The MODIS land team is currently working on methods 
that integrate higher resolution land cover data, where available, to improve NPP estimates. 
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Figure A.1 Conceptual model of the MOD17 algorithm 

 
Source:  Heinsch et al., (2003). 
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Table A.1 Land cover classification scheme 
Class value Class description 
0 Water 
1 Evergreen Needleleaf Forest 
2 Evergreen Broadleaf Forest 
3 Deciduous Needleleaf Forest 
4 Deciduous Broadleaf Forest 
5 Mixed Forest 
6 Closed Shrubland 
7 Open Shrubland 
8 Woody Savanna 
9 Savanna 
10 Grassland 
12 Cropland 
13 Urban or Built Up 
16 Barren or Sparsely Vegetated 
254 Unclassified 
255 Missing Data 

Source:  Heinsch et al., (2003). 

Box A.2 Detailed SPAM processing methods  

Source:  Authors. 
Notes:  Equation is adapted from Monfreda et al., (2008) and Prince et al., (2001). 
 
  

The general model to convert crop production statistics from the Spatial Allocation Production 
Model (SPAM) to equivalent units in carbon was: 

𝑁𝑁 =  ∑ 𝑃𝑃𝑃𝑃𝑖𝑖∗𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖∗(1−𝑀𝑀𝑃𝑃𝑖𝑖)∗𝑃𝑃
𝐻𝐻𝐼𝐼𝑖𝑖•𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖    

In this equation, P is the production in units of carbon and i represents the individual 
crop production system. 𝑁𝑁𝑃𝑃𝑖𝑖 is the total amount of crop produced in each cell, and was reported 
as a weight or volume. 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 is a multiplier that converts the reported crop production amount 
to units of mass. 𝑀𝑀𝑃𝑃𝑖𝑖 represents the percent moisture for the given crop, and subtracting from 
one gave the dry mass percent. 𝑃𝑃 is a simple constant to convert dry plant mass to carbon, 
estimated as .45 g C g-1. 𝐻𝐻𝐼𝐼𝑖𝑖 is the harvest index for the given crop and accounts for the portion 
of the crop lost as result of harvest. 𝑓𝑓𝐻𝐻𝑓𝑓𝑖𝑖 is the above ground fraction of the plant and used to 
account for root mass. Many of these parameters are crop specific and found from the literature 
(Table A.2). The raster calculator was used to convert the SPAM production statistic for each 
crop into kilograms of carbon removed from the landscape using the parameters. These 
calculations were done for both the 2000 and 2005 datasets. For a comparison between 2000 
and 2005, the 2005 dataset was modified to match the 2000 dataset by removing crops and crop 
types not present in the 2000 SPAM dataset. 
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Table A.2 Parameters for converting SPAM to units of carbon removed from the landscape at 
harvest 

  Parameters 
Crop MRY MC C HI fAG  
Banana 1000000 0.74 0.45 0.1 1 
Barley 1000000 0.1 0.45 0.4 0.8 
Beans 1000000 0.79 0.45 0.5 0.5 
Cassava 1000000 0.65 0.45 0.6 0.75 
Chickpea 1000000 0.75 0.45 0.5 0.5 
Cocoa 1000000 0.6 0.45 0.03 1 
Coconut 1000000 0.1 0.45 0.35 1 
Coffee Arabica 1000000 0.11 0.45 0.012 1 
Coffee Robusta 1000000 0.11 0.45 0.012 1 
Cotton 1000000 0.08 0.45 0.4 0.8 
Cowpea 1000000 0.77 0.45 0.5 0.5 
Groundnut 1000000 0.09 0.45 0.4 0.8 
Lentil 1000000 0.75 0.45 0.5 0.5 
Maize 1000000 0.11 0.45 0.45 0.85 
Millet pearl 1000000 0.09 0.45 0.45 0.75 
Millet small 1000000 0.09 0.45 0.45 0.75 
Oil palm 1000000 0.1 0.45 0.35 0.94 
Other cereals 1000000 0.1 0.45 0.4 0.8 
Other fibers 1000000 0.1 0.45 0.5 0.5 
Other oil crops 1000000 0.1 0.45 0.35 0.94 
Other pulses 1000000 0.75 0.45 0.5 0.5 
Other roots and tubers 1000000 0.75 0.45 0.5 0.8 
Pigeon pea 1000000 0.75 0.45 0.5 0.5 
Plantain 1000000 0.74 0.45 0.1 1 
Potato 1000000 0.75 0.45 0.5 0.9 
Rape seed 1000000 0.1 0.45 0.35 0.94 
Rest of crops 1000000 0.5 0.45 0.5 0.5 
Rice 1000000 0.09 0.45 0.4 0.8 
Sesame seed 1000000 0.1 0.45 0.35 0.94 
Sorghum 1000000 0.1 0.45 0.4 0.8 
Soybean 1000000 0.1 0.45 0.4 0.87 
Sugar beet 1000000 0.75 0.45 0.5 1 
Sugarcane 1000000 0.85 0.45 0.93 0.92 
Sun flower 1000000 0.1 0.45 0.35 0.94 
Sweet potato 1000000 0.77 0.45 0.55 0.9 
Tea 1000000 0.77 0.45 0.05 1 
Temperate fruit 1000000 0.85 0.45 0.03 1 
Tobacco 1000000 0.85 0.45 0.5 0.5 
Tropical fruit 1000000 0.85 0.45 0.03 1 
Vegetable 1000000 0.85 0.45 1 0.5 
Wheat 1000000 0.11 0.45 0.4 0.83 
Yam 1000000 0.77 0.45 0.55 0.9 

Sources: Lobell et al. (2002); Martin et al. (1976); Monfreda et al. (2008). 
Notes:  𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 is a multiplier that converts the reported crop production amount to units of mass. 𝑀𝑀𝑃𝑃𝑖𝑖 represents the percent 

moisture for the given crop, and subtracting from one gave the dry mass percent. 𝑃𝑃 is a simple constant to convert dry 
plant mass to carbon, estimated as .45 g C g-1. 𝐻𝐻𝐼𝐼𝑖𝑖 is the harvest index for the given crop and accounts for the portion of 
the crop lost as result of harvest. 𝑓𝑓𝐻𝐻𝑓𝑓𝑖𝑖 is the above ground fraction of the plant and used to account for root mass.
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Box A.3 Processing MODIS and SPAM data and estimating AANPP 

Source:  Authors. 
 
  

We developed a spatially-explicit estimate of the agricultural appropriation of net primary 
productivity (AANPP) for countries across Africa by combining global NPP data derived from 
MODIS (moderate-resolution image spectrometer) sensors and crop distribution and production 
statistics from SPAM. There was a substantial amount of data pre-processing required in order 
to seamlessly integrate the two data sets. For this study, MODIS data was downloaded from the 
USGS EarthExplorer (earthexplorer.usgs.gov). Thirty-eight MODIS tiles encompass the 
continent of Africa (Path 16, Rows 6-8; Path 17, Rows 5-8; Path 18, Rows 5-9; and Path 19, 
Rows 5-12; Path 20, Rows 5-12; Path 21, Rows 6-11; and Path 22, Rows 7-10). Each of the tiles 
for the years 2004 and 2005 were downloaded for the MOD17A2 product. Original data were in 
the Integerized Sinusoidal (ISIN) projection in HDF format. Few GIS products or image 
processing products have the capacity to reproject these file types out of the ISIN projection. 
Thus, the MODIS reproject tool (MRT) was used to reproject the MODIS files from the ISIN 
projection into the Geographic Projection with the WGS 84 Datum. This tool was also used to 
conveniently mosaic the tiles together for each of the years. The MRT is available for free from 
the USGS website along with a detailed instruction manual for installation and use 
(https://lpdaac.usgs.gov/tools/modis_reprojection_tool). The MODIS data, once reprojected into 
the proper projection, still required substantial pre-processing. The mosaic tiles were opened in 
GIS (QGIS). The MOD17 product had several fill codes that mask specific areas. Extremely 
low productive/barren areas had the code 65533, water had the code 65534 and urban/built up 
areas had the code 65530. These pixels were reclassified to achieve uniformity within the 
images. Water was reclassified as ‘nodata’, urban areas were reclassified as ‘0’ and pixels of 
low productivity scattered throughout the image were reclassified based on the average value of 
neighboring pixels. Furthermore, the original MODIS data was scaled by a factor of .0001 to 
obtain the correct units. Pixel values over the two years, 2004 and 2005, were then averaged to 
produce an estimate of NPP that matches the time-span of the SPAM data. The MODIS grid 
with 1 km x 1 km cells was then resampled into a grid with 10 km x 10 km cells to match the 
SPAM data. The data were resampled into the larger grid and the weighted values of the 
original cells within the larger cells were summed. The result was a raster of NPP values in kg C 
m-2 yr-1 at the same spatial resolution and over the same time period as the SPAM crop 
production data. A graphical representation of this workflow is shown in Figure B.3 along with 
a step-by-step explanation. 
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Figure A.2 Conceptual model of the MODIS data processing 

 
Source: Authors. 
Notes: MODIS = moderate-resolution image spectrometer.

Steps 
1. Data input, this model requires the input of one MODIS 
scene and one vector polygon file.  
2. Reclassify Grid Values: MODIS products utilize several 
fill codes for certain areas which must be modified to work 
in any analysis.  All the fill values, 65530 (urban), 65534 
(water) and 65535 (unclassified) are reclassified to -99999 
which QGIS interprets as “No Data”.  
3. Fill No Data: All of the No Data cells created in step 2 
are again reclassified using the averages of the closest cells 
with values. This can also be done easily using the Raster 
Calculator using the following formula: Con 
(IsNull(“Raster”), FocalStatistics (“Raster”, NbrCircle(10, 
"CELL"), "MEAN"), “Raster”).  
4. Reclassify Grid Values: A second scene is created from 
the original scene with the cells identified with 665534 
(water) classified as “No Data”.  
5. Raster Calculator: Using the formula: (“raster” >= 0) * 
“raster”; all values from the grid created in step 4 that are 
greater -1 are multiplied by the grid created in step 3. This 
creates a mask of the cells originally classified as water 
being classified as no data, while the cells originally 
classified as urban or unclassified remain classified as the 
nearest neighbor average.  
6. Raster Calculator: Using the Formula: 
(a*.0001*1,000,000); the output from step 5 is converted 
to the appropriate units (kilograms carbon per sq km).  
7. Resample Raster Layer Statistics: The result from step 6 
is resampled to a larger grid to match the SPAM data with 
10 km x 10 km grid cells.  All original grid cells within the 
larger grid cells are weighted and summed based on the 
proportion of the cell present in the larger grid.  
8. Clip Grid with Polygon: The grid created in step 7 is 
then clipped to the extent of the input polygon from Step 1. 
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