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A B S T R A C T   

CONTEXT: Adoption and diffusion of digital farming technologies are expected to help transform current agri-
cultural systems towards sustainability. To enable and steer transformation we need to understand the mecha-
nisms of adoption and diffusion holistically. Our current understanding is mainly informed by empirical farm- 
level adoption studies and by agent-based models simulating systemic diffusion mechanisms. These two ap-
proaches are weakly integrated. 
OBJECTIVE: Our objective is to build an empirically grounded conceptual framework for adoption and diffusion 
of digital farming technologies by synthesizing literature on these alternative approaches. 
METHODS: We review 32 empirical farm-level studies on the adoption of precision and digital farming tech-
nologies and 27 agent-based models on the diffusion of agricultural innovations. Empirical findings are syn-
thesized in terms of significance and partially standardized coefficients, and diffusion studies are categorized by 
their approaches and theoretical frameworks. 
RESULTS AND CONCLUSIONS: We show that farm-level studies focus on farm and operator characteristics but 
pay less attention to attributes of technology, interactions, institutional and psychological factors. Agent-based 
models, despite their usefulness for representing system interaction, only loosely connect with empirical farm- 
level findings. Based on the identified gaps, we develop a conceptual framework integrating farm-level evi-
dence on adoption with a systemic perspective on technology diffusion. 
SIGNIFICANCE: Our empirically grounded conceptual framework is the first holistic approach to connect the dots 
between the wealth of empirical research on technology adoption with more model-driven investigation of 
innovation diffusion in agent-based studies. Focusing on digital farming technologies, it may serve as a reference 
for those studying the adoption and diffusion of such technologies beyond farm scale. Furthermore, this 
framework can be the basis for contextual applications to inform policy-makers trying to foster the diffusion of 
suitable digital technologies through interventions as it highlights where policy can impact important aspects of 
adoption via relevant processes of diffusion.   

1. Introduction 

Digital farming has the potential to transform agricultural systems to 
be more sustainable by reducing the use of agrochemicals. Global agri-
culture faces various challenges to meet the demand for food and fibers 
in the coming years because it needs to maintain overall productivity 
without further polluting soil, water and other agroecological systems 
(Finger et al., 2019; Cole et al., 2018). Digital farming (also referred to as 
smart farming or agriculture 4.0) is expected to address these challenges 
using information communication technologies to collect and analyze 

data to support efficient farming processes (OECD, 2019; Bacco et al., 
2019). Digital farming technologies cover a broad spectrum, from small 
mobile apps for decision support, over in-field sensors and remote 
sensing technologies for data collection, and to drones and robots for the 
automation of processes (see OECD (2019) for detailed categories of 
digital farming technologies). A sustainable agriculture in the future will 
need digital farming technologies (Walter et al., 2017), which use 
Artificial Intelligence (AI), cloud computing, Internet of Things (IoT), 
and blockchain among others (Torky and Hassanein, 2020; Klerkx et al., 
2019). The rise of these technologies and the potential disruptive impact 
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of digital agriculture make it particularly important to understand the 
mechanisms of adoption and diffusion of digital farming technologies. 

The mechanisms of adoption and diffusion of digital farming tech-
nologies must be understood on both farm and system level, where 
system refers to the collection and organization of entities relevant for 
the adoption and diffusion. Adoption behavior not only depends on farm 
and operator characteristics but is also influenced by structural, political 
and economic conditions of the agricultural system. The system evolves 
over time, based on the behavior of the farmers and their interactions 
with their environment and one another (Alexander et al., 2013). It is 
the system interaction in combination with, and depending on, indi-
vidual farm characteristics that will ultimately determine technology 
diffusion and its impact on the sustainability of agriculture. Therefore, it 
is necessary to understand not only individual adoption but also system 
interaction in the process of adoption and diffusion. 

So far, our understanding of the mechanisms of technology adoption 
and diffusion mainly comes from separate empirical farm-level studies 
on individual adoption and agent-based models (ABMs) simulating 
systemic diffusion mechanisms. Other equally important system ap-
proaches like system dynamics (Reinker and Gralla, 2018) are beyond 
the scope of this paper. Farm-level adoption studies of digital farming 
technologies start to emerge in recent years, like Michels et al. (2020), 
Salimi et al. (2020), Caffaro and Cavallo (2019), Drewry et al. (2019), 
Pivoto et al. (2019), and Zheng et al. (2018), but they are still few 
compared to the large amount of adoption studies of other agricultural 
practices (e.g. sustainable farming practice (Dessart et al., 2019) and 
precision farming (Pathak et al., 2019)). This lack of information re-
quires us to also refer to the lessons of precursor technologies, i.e. pre-
cision agriculture technologies (PATs). Farm-level adoption studies 
usually use regression-type analysis (e.g. logit, probit, poisson models) 
testing the effect of different variables on adoption (such as farm size 
and farmers’ age) or qualitative descriptive approaches (e.g. descriptive 
summary of interviews with farmers) testing less measurable factor 
(such as compatibility of a technology and data safety) (Klerkx et al., 
2019). These studies usually do not consider system interaction. When 
considering the process of adopting a potentially transformative tech-
nology like digital farming, feedback processes may speed up or dampen 
the technology diffusion. This requires us to look at mechanisms and 
models beyond the farm level. 

ABMs are gaining popularity in modeling adoption and diffusion of 
innovations as they capture system interaction among heterogenous 
entities (Zhang and Vorobeychik, 2019). In an ABM, a system is modeled 
as a collection of autonomous decision-making entities, i.e. agents 
(Bonabeau, 2002). An agent can be an individual (e.g. a farmer) or a 
collective entity (e.g. an organization). It assesses its environment and 
behaves based on rules defined by modelers. ABMs enable researchers to 
create, analyze and experiment with models composed of agents that 
interact with each other and with their environment (Gilbert, 2007). 
Nevertheless, our review on ABMs of agricultural innovations (see sec-
tion 3) shows that existing ABMs have not covered adoption and diffu-
sion of digital farming technologies yet. Most importantly, we find that 
current ABMs are not well connected with empirical farm-level evidence 
on the adoption and diffusion of digital farming and are thus lacking the 
empirical foundation needed for applications beyond the toy-model 
stage so far (Matthews et al., 2007). 

The objective of this paper is to build an empirically grounded 
conceptual framework for modeling adoption and diffusion of digital 
farming technologies. To this end, we synthesize literature from 
empirical farm-level adoption studies of precision and digital farming 
technologies with ABMs simulating systemic diffusion mechanisms. We 
need to establish this connection to later explore how farmers’ 

(adoption) behavior influences the system and how changed system 
conditions in turn affect what is happening at the farms. This dynamic 
and spatially differentiated process ultimately determine diffusion of 
digital farming technologies, and understanding them could help us to 
identify effective pathways for sustainable agricultural systems. Such a 
conceptual framework can be the basis for contextual applications to 
inform policy-makers trying to foster implementation of suitable digital 
technologies through interventions, such as subsidies and extension 
services. Our empirically grounded conceptual framework may gener-
ally serve as a reference for those studying the adoption and diffusion of 
digital farming technologies beyond farm scale, and it may more spe-
cifically interest ABM modelers aiming to simulate such processes in 
different contexts. The results of structured – and in parts quantitative – 
review of both strands of literature are by themselves relevant contri-
butions for the respective communities. 

This paper is organized as follows. In section 2, we review farm-level 
adoption studies of precision and digital farming technologies and 
summarize determinants of farmers’ adoption decisions. In section 3, we 
review ABMs of adoption and diffusion of agricultural innovations and 
their limitations for modeling adoption and diffusion of digital farming 
technologies. Section 4 presents the empirically grounded conceptual 
framework for modeling adoption and diffusion of digital farming 
technologies. Section 5 concludes the paper and points out its limitations 
and directions for future research. 

2. Empirical farm-level studies of technology adoption 

2.1. Selection of farm-level studies 

The literature search was conducted a final time on 14 April 2020 
using the Web of Science database. Search terms used and numbers of 
studies identified are presented in Table 1. Search terms of group 1 
require that studies must investigate adoption or diffusion of agricul-
tural technologies/innovations. Group 2 requires that the investigated 
technologies must be either precision or digital (including autonomous) 
farming technologies. The combination of group 1 and 2 (by logical 
“AND”) resulted in 1266 identified studies. 

After reading all 1266 abstracts, we selected 32 studies that focus on 
determinants of farmers’ decision to adopt technologies in crop pro-
duction (see Appendix 1). We only focus on crop production because 
only two studies of livestock production (Abeni et al., 2019; Lima et al., 
2018) are found by the structured literature search. Nearly half of the 
selected studies (14) was conducted in the USA; 12 studies in European 
countries; and the rest in Canada (2), Australia (1), Brazil (1), China (1), 

Table 1 
Search terms used and number of farm-level studies identified.  

Group Search terms Number of 
studies 

1 TS = (agricultur* OR farm*) AND 
TS = (technolog* OR innovation*) AND 
TS = (adopt* OR diffusion) 

6694 

2 TS = (precision OR digital OR “smart farming” OR 
robot* OR autonomous OR automa* OR “unmanned 
aerial vehicle*” OR drone OR “cloud computing” OR 
“site specific” OR “variable rate” OR “GPS” OR “remote 
sensing” OR “soil sampling” OR “yield mapping” OR 
“yield monitor*” OR “autosteer” OR drip OR irrigation 
OR water saving) 

1,389,788  

Combine 1 and 2 (by logical “AND”) 1266 

Source: own results. 
Note: TS = Topics, referring to the title, abstract, or keywords of an article. 
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Fig. 1. Influencing factors on farmers’ technology adoption decision synthesized from 54 cases. 
(Source: own results) 
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Fig. 2. Partially standardized coefficients of factors from models with binary outcome. 
(Source: own results) 
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and Iran (1). In terms of methods, 26 studies used regression-type 
analysis (e.g. logit, probit, poisson models), and 6 studies used quali-
tative descriptive approaches (like descriptive summary of interviews 
with farmers or experts). Among regression-type studies, 21 studies 
modeled the adoption decision as a binary outcome (yes/no), and 8 
studies modeled intensity of adoption (e.g. number of PATs used). Some 
studies included both cases, and some regression-type studies also 
included qualitative descriptions. 

In this study, we consider not only the significance of factors but also 
their importance for explaining adoption. Fig. 1 illustrates the fre-
quencies with which factors are considered and identified as significant 
(significant at least at a 10% level if it is a regression-type analysis; 
identified as important if it uses qualitative approach) or as insignifi-
cant. Some studies modeled the binary adoption decision and adoption 
intensity of multiple technologies. Thus, we count the number of cases 
(in total 54 cases reported in 32 studies, as shown in x-axis of Fig. 1) 
instead of the number of studies. Factors are grouped into 6 categories: 
farm characteristics (e.g. farm size), operator characteristics (e.g. age of 
the operator), interactions (e.g. get information from consultants), in-
stitutions (e.g. regulations), attributes of technology (e.g. relative 
advantage) and psychological factors (e.g. attitude towards the tech-
nology). Fig. 2 summarizes partially standardized coefficients of factors 
representing their importance (i.e. effect size) in farmers’ adoption 
decisions. 

2.2. Significance of factors 

2.2.1. Farm characteristics 
Farm characteristics get a great deal of attention in farm-level 

studies. 1) Farm size is identified to be positively related to adoption 
in 33 out of 43 cases. Large farms can take advantage of economies of 
scale and are more likely to be able to afford the high initial investment 
of new technologies (Tamirat et al., 2017). One may speculate that large 
farms are more targeted by technology providers for their potential of a 
higher sales volume. 2) Biophysical conditions like yield variability 
and locations are found significant by 15 out of 26 cases. Farmers with 
higher quality land might anticipate greater potential benefits from 
adoption than farmers with lower quality land (Isgin et al., 2008). 3) 
Land use like the share of arable land or share of a certain crop de-
termines if the technology meets the farms’ needs and is found relevant 
by 11 out of 18 cases. Barnes et al. (2019) find that farms with a high 
share of arable land tend to adopt more PATs. Paustian and Theuvsen 
(2017) find producing barley negatively influences the adoption of 
PATs. 4) Use of complementary technologies positively contributes to 
the adoption of other PATs as shown in 18 out 19 cases. For instance, 
farmers who already use a variable rate technology are more likely to 
adopt yield mapping technologies (Isgin et al., 2008). 5) Land owner-
ship might influence the adoption of technologies requiring investments 
tied to the land such as precision irrigation (Moreno and Sunding, 2005; 
Abdulai et al., 2011). However, none of the 8 cases that include this as 
an explanatory variable find it statistically significant. 6) Labor avail-
ability like the number of regular employees is statistically significant in 
3 out of 8 cases. Pivoto et al. (2019) find that the lack of skilled labor 
operating the new technology is a constraint for the adoption. On the 
other hand, labor availability and cost could be the main drivers of ro-
botic farming technologies. 7) Livestock ownership is considered in 6 
out of 54 cases, but only Lambert et al. (2015) find a positive relation-
ship between owning livestock and adoption of computerized cotton 
management system with digital maps. 8) Farm succession could be an 
important factor influencing farmers’ adoption decision in digital 
farming technologies that require high investment, but only Paustian 

and Theuvsen (2017) consider this factor and find it statistically 
insignificant. 

2.2.2. Operator characteristics 
Features of farm operators are often researched in farm-level studies. 

1) Education level is found significant in 15 out of 39 cases. Farmers 
with a high level of education could better comprehend the application 
of new technologies (Aubert et al., 2012). 2) Age is found significant in 
12 out of 31 cases, and 11 cases report a negative impact of age on 
adoption. The complexity of digital farming technologies is perceived as 
a barrier to adoption for older farmers. Moreover, fewer working years 
until retirement reduces the planning horizon regarding technology use 
(Barnes et al., 2019). However, Pivoto et al. (2019) observe that older 
farmers tend to adopt autopilot spraying. 3) Farming as the main 
occupation is reported to be significant in 3 out of 13 cases. The more 
important the farm to the household, the higher the willingness to adopt 
(Zheng et al., 2018). 4) Income impacts adoption as shown in 4 out of 13 
cases. This might be due to high initial investments required by digital 
farming technologies. 5) Computer use for farm management is 
examined by 11 cases and 7 of them observe a positive impact on 
adoption. Being familiar with computers makes farmers comfortable in 
using PATs (D’Antoni et al., 2012). 6) Off-farm income is only found 
significant by Schimmelpfennig and Ebel (2016) in the case of adoption 
of a bundle of technologies (yield monitor, GPS and variable-rate tech-
nologies). 7) Farming experience (in years) is explored by 6 cases but 
only 2 cases imply a positive impact (Asare and Segarra, 2018; Paustian 
and Theuvsen, 2017). 8) Innovativeness of a farmer is found significant 
for adoption by 5 of 6 cases (e.g. Pino et al., 2017; Aubert et al., 2012). 9) 
Knowledge & capacity are crucial as 4 out of 5 cases point out. Lack of 
knowledge in new technologies (especially in software and data trans-
fer) is a barrier to adoption (Takácsné György et al., 2018). 10) Risk 
preference has been rarely investigated (2 out of 54 cases). Farmers 
with a higher ratio of debt to asset (a proxy of risk preference) tend to 
adopt more PATs (Isgin et al., 2008). 

2.2.3. Interactions 
Although interactions within social networks are found influential 

for adoption of agricultural innovations (Ramirez, 2013; Sampson and 
Perry, 2019), they have not become a focus of adoption studies of pre-
cision and digital farming technologies (Fig. 1). 1) Having consultants 
is found by 10 out of 16 cases to be significantly associated with adop-
tion. Lack of advisory services and the negative opinion on PATs from 
advisors influence farmers’ adoption decisions (Pivoto et al., 2019). 2) 
Extensions connect researchers and farmers by introducing innovations 
to farmers, and they are found to be influential by 3 out of 9 cases. Asare 
and Segarra (2018) report a negative impact of having contact with 
university extensions on adoption of soil sampling technology, while in 
Larson et al. (2008) farmers who believe that information from exten-
sions are helpful tend to be adopters of remote sensing technology. The 
interview of Kutter et al. (2011) considers private extension service the 
most important promoter of PATs. 3) Farmers’ associations or other 
organizations are often believed to be an information source for 
farmers, but only 2 of 11 cases affirm their impact on farmers’ adoption 
decisions (Barnes et al., 2019; Takácsné György et al., 2018). 4) Tech-
nology providers offer farmers pre-adoption trials and training, farm 
system advice and post-installation technical support. More technical 
support and training from technology providers are believed to promote 
adoption (Drewry et al., 2019; Barnes et al., 2019). 6 out of 8 cases find a 
positive effect of having access to technical support and training from 
technology providers on farmers’ adoption decisions. 5) Other farmers 
can influence farmers’ decisions through information exchange. 
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However, the 6 regression-type studies we reviewed have not found the 
statistical significance of exchanging information with other farmers. 
But the interviews conducted by Pivoto et al. (2019) and Kutter et al. 
(2011) emphasize the impact of neighbors’ negative opinions on PATs 
and the importance of obtaining information from other farmers. 6) 
Contractors provide machinery services to farmers. 4 out of 6 cases 
emphasize the impact of getting information from contractors or paying 
them for related farming activities (e.g. Gallardo et al., 2019; Larson 
et al., 2008). Especially for small farms, contractors will be a major 
driver behind the adoption (Kutter et al., 2011). 7) Attending Events 
(trade shows, workshops) is identified as influential by Lambert et al. 
(2014), Tamirat et al. (2017) and Kutter et al. (2011). 8) Information 
sources in general play a role in farmers’ adoption decisions as shown in 
5 out of 12 cases. 

2.2.4. Institutions 
Institutions are “the rules of the game in a society” (North, 1990, p.3) 

and devise constraints that shape human interactions. They consist of 
formal and informal rules, norms, beliefs, and potentially organizations. 
Institutional theories are expansive (see Ostrom, 2005), thus we only 
focus on what we found in the literature.1) Accessibility of subsidy/ 
credit is believed to have a positive effect on adoption by 6 out of 8 
cases. Reichardt and Jürgens (2009) point out that financial support is a 
prerequisite for diffusion of PATs. Lambert et al. (2015) discover that 
farmers who participate in conservation easement programs are more 
likely to adopt PATs. 2) Laws and regulations: 2 cases (Barnes et al., 
2019; Kutter et al., 2011) find that increasing environmental re-
quirements (e.g. stringent laws on pesticide and nitrogen application) 
are one of the forces for adoption of PATs that can significantly reduce 
chemical use. In the context of digital farming, regulations that ensure 
data ownership and prevent misuse of farms’ data can promote adoption 
of digital farming technologies (Barnes et al., 2019). 

2.2.5. Attributes of technology 
Regarding attributes of technology, the theory of Diffusion of Inno-

vation (DOI) of Rogers (2003) and the Technology Acceptance Model 
(TAM) of Davis (1985) are often applied by empirical studies. We 
organize attributes of technology according to the DOI because it covers 
a broader range than TAM. According to the DOI, the perceived attri-
butes of an innovation (relative advantage, complexity, compatibility, 
trialability, and observability) are important explanations of adoption 
(Rogers, 2003). Surprisingly, they seem to be less researched regarding 
adoption of precision and digital farming technologies. 1) Relative 
advantage (perceived usefulness in TAM) like increasing productivity 
promotes adoption, while high cost and time required for handling data 
are barriers (Adrian et al., 2005). Only 10 out of 46 regression-type cases 
consider this attribute, and 7 cases identify it as significant (e.g. Walton 
et al., 2008; Zheng et al., 2018). Qualitative descriptive studies pay more 
attention to attributes of technology than regression-type studies. They 
explore the exact advantages and disadvantages of adopting precision 
and digital farming technologies. In 7 out of 8 descriptive cases, better 
information for farm management, reduction in input-use, and high 
yield are the most often mentioned motivations for farmers to adopt 
such technologies. “High initial investment” and “time consuming” are 
the two most often mentioned disadvantages (Reichardt and Jürgens, 
2009). 2) Complexity (perceived ease of use in TAM) was considered by 
12 cases. Studies using interviews with farmers and experts convey that 
complexity in manipulating data and machines is a constraint for 
adoption (Pivoto et al., 2019). 3) Compatibility of new farming tech-
nologies to existing machinery, poor telecommunication infrastructure 
and data interoperability are constraints of adoption of precision and 
digital farming technologies, pointed out by 7 qualitative cases, while 
only 1 regression-type analysis considers this attribute (Aubert et al., 
2012). 4) Trialability actualized in a positive exploratory experience 
can facilitate the adoption. However, the only study that considers this 
attribute (Aubert et al., 2012) reveals a negative relationship between 

trialability and adoption. As they interpret, this might be because non- 
adopters have a too optimistic prior impression about the ease of use 
of new technologies. 5) Observability of the technology by peers is not 
examined by any of the studies we have reviewed. This constitutes stark 
negligence of its stated importance for adoption in the DOI. 6) We add a 
sixth attribute, data safety, which is especially relevant for digital 
farming. Issues of data safety have been stressed by 4 descriptive cases 
(Drewry et al., 2019; Kutter et al., 2011; Pivoto et al., 2019; Reichardt 
and Jürgens, 2009). They stress that concern about the misuse of digital 
data by commercial service providers makes farmers more cautious. 
Besides the papers we reviewed, recent studies (e.g. Pfeiffer et al., 2020; 
Wiseman et al., 2019; Klerkx et al., 2019) highlight the urgent need for 
legal and regulatory frameworks of data collection and use in the context 
of digital farming. 

2.2.6. Psychological factors 
Psychological factors are less investigated by models with binary 

outcomes and interviews, but more by models of adoption intensity. The 
Theory of Planned Behavior (TPB), developed by Ajzen (1991), is a 
theoretical framework often used in examining the impacts of farmers’ 
perceptions on technology adoption. The TPB states that a person’s 
intention to do something is determined by his or her attitude, subjective 
norm and perceived behavioral control. 1) Attitude is a farmer’s posi-
tive or negative evaluation of adoption. It is found to be statistically 
significant in 10 out of 12 cases. Farmers who believe the technology is 
beneficial tend to adopt it (Pino et al., 2017). 2) Subjective norm refers 
to the perceived pressure or expectation to adopt or not. 5 cases find that 
external pressure from the community and environmental organizations 
positively contributes to adoption of PATs (e.g. Aubert et al., 2012; 
Lynne et al., 1995). 3) Perceived behavioral control refers to a 
farmer’s perceived ability to implement adoption. It contains self- 
efficacy and perceived controllability (Ajzen, 2002). 5 out of 6 cases 
confirm the importance of this factor. Lynne et al. (1995) declare a 
positive relationship between perceived behavioral control and tech-
nology adoption, while Pino et al. (2017) do not. 

2.3. Importance of determinants 

Statistical significance of an explanatory factor neither tells anything 
about the size of the effect per unit change nor about the variability of 
variables in the data. Both are crucial elements to assess the importance 
of the effect for explaining adoption. As a consequence, we calculated 
the partially standardized coefficient of each factor from regression 
models. Standardized coefficients make it more meaningful to compare 
the relative influence of different independent variables on the depen-
dent variable when these variables are measured in different scales or 
ways. Standardized coefficients transform the independent variables 
into variables measured in “standard deviation units” (sdx) (Menard, 
2004). However, calculating standardized coefficients also requires 
knowing the standard deviation of dependent variables (sdy). In the case 
of logit models, standard deviation of transformed dependent variables 
using logit link (sdlogit(y)) is required (Menard, 2004), which can be 
calculated when pseudo R-squared and sdlogit(̂y) are available. Given the 
limited data availability, we use partially standardized coefficients. 
They allow us to compare the importance of different independent 
variables assuming that the variances of the dependent variables from 
different models are similar. Following Agresti (2007), we calculate a 
partially standardized coefficient of an independent variable as: 

βx = bx*sdx,

where bx is the non-standardized coefficient of the independent variable 
x; sdx is the standard deviation of the independent variable x. 

The interpretation of a partially standardized coefficient, βx, is that if 
the independent variable x increases by one standard deviation unit 
(sdx), the dependent variable (y) or the transformed dependent variable 
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using a logit or probit function (logit(y), probit(y)) will increase by βx unit 
(s). 

A boxplot (Fig. 2) presents partially standardized coefficients of in-
dependent variables in models with binary outcomes1 (i.e. adopt or not 
adopt) following the same categorization from section 2.1. 

The boxplot in Fig. 2 shows the minimum, maximum, first quartile, 
third quartile, mean, outliers, and the number of observations. The 
higher the number of observations (i.e. cases in this study), the more 
reliable the means of the partially standardized coefficients are. Thus, 
we try to interpret the results in the sequence of the reliability of the 
synthesized data and by the comparability of factors. Note that although 
some factors have no observations that enable us to calculate the 
partially standardized coefficients, they are not omitted in Fig. 2 to keep 
the consistency with Fig. 1. Another advantage of presenting all factors 
is that the unexplored factors can highlight potential directions for 
future research. 

Among the most investigated factors i.e. farm size (18 observations), 
education (20 observations) and age (18 observations), the partially 
standardized coefficients of farm size have a higher mean value (0.35) 
than education (0.15) and age (− 0.13). This implies that an increase by 
a standard deviation unit in farm size influences farmers’ adoption de-
cision more than that of education and age. Besides, farm size is 
consistently shown to have positive partially standardized coefficients, 
which means larger farms are more likely to adopt new technologies. 
Education also shows relatively consistent positive impacts with four 
exceptions. Age, on the contrary, does not seem to be a helpful predictor 
for adoption because of its varying and inconsistent pattern. 

For biophysical conditions, we calculated the partially standardized 
coefficients of “yield” (6 observations, mean = 0.47). A change of one 
standard deviation unit in yield is shown to have a bigger impact on 
adoption than that of land ownership (5 observations, mean = 0.12) and 
farming as the main occupation (9 observations, mean = 0.27). Off-farm 
income (7 observations, mean = 0.01) is shown to have a smaller impact 
on adoption than total income (4 observations, mean = 0.31). Use of 
complementary technologies (8 observations, mean = 0.12) and com-
puter use (6 observations, mean = 0.27) both have positive impacts on 
farmers’ adoption decisions, with the latter showing overall larger 
importance. 

Regarding attributes of technology, partially standardized co-
efficients of “perceived usefulness” (3 observations, mean = 0.47) and 
“complexity” (3 observations, mean = − 0.20) were calculated. Together 
with attitude (3 observations, mean = 0.54), the importance of these 
three factors and their consistency remind us that attributes of tech-
nology and farmers’ attitude towards the technology have the potential 
to be more useful predictors for adoption decisions than characteristics 
of farms and farmers. From the higher numbers of observations from 
farm and operator characteristics, we can see that adoption studies in 
the past have been focusing on social-demographics, while overlooking 
the importance of attributes of technology and psychological factors. 
Given the limited information, we do not discuss other factors any 
further but leave them for inspection by readers. 

As we mentioned in section 2.2, the significance of interactions 
within social networks has not been investigated as often as one would 
expect according to researchers like Rogers (2003), Ramirez (2013), and 
Sampson and Perry (2019). In terms of their importance, surprisingly, 
interaction with other farmers seems less important for adoption than 
most of the other factors at first sight, but the evidence on this is very 
limited (2 observations, mean = − 0.09). We also notice that interaction 
with other farmers can negatively impact a farmer’s adoption decision 
(Pivoto et al., 2019). A possible interpretation is that this can happen 
when the attitude of other farmers towards the new technology is 

negative as negative opinions can diffuse in social networks as well 
(Deffuant, 2006). This highlights the role of social norms and their 
dissemination in farmers’ adoption decision. In further investigations, 
we combined the search term of TS = (“social network analysis”) with 
group 1 and 2 (Table 1), but no adoption studies of precision or digital 
farming technologies yet using the method “social network analysis” 
were found in the Web of Science. 

2.4. Limitations of farm-level studies 

When considering the process of adopting digital farming technolo-
gies, which potentially can transform the agricultural system, factors 
determining each farmer’s adoption decision change over time and 
across space. Farmers may learn about the technology from neighbors 
who already adopted it. This means farmers’ awareness, knowledge and 
attitude may keep changing during the diffusion process of a new 
technology. Technology suppliers can offer more mature and/or cheaper 
versions based on feedback from users and economies of scale. Addi-
tionally, farmers may get more or better services by outsourcing tech-
nology implementation as the technology is spreading over time 
(Pedersen et al., 2020). Thus, feedback processes may speed up or 
dampen technology diffusion. However, as presented above, farm-level 
studies of complex technologies often assume variables to be exogenous 
and do not capture the interrelationship among variables. Thus, they do 
not account for the effects of endogenous feedback within a system. 
Consequently, the understanding of the processes leading to the diffu-
sion of a new technology in the farm population requires us to look at 
mechanisms and models beyond the farm level. 

3. ABMs of adoption and diffusion of agricultural innovations 

As mentioned in the introduction, ABMs are gaining popularity in 
modeling adoption and diffusion of innovations as they capture system 
interaction among heterogenous entities in a temporal explicit manner 
(Zhang and Vorobeychik, 2019). For example, farmers (one type of 
agents) in Sun and Müller (2012) decide whether to convert cropland to 
forest (in response to a payment for ecosystem services) or not, based on 
not only their socioeconomic characteristics and features of their land 
but also on other farmers’ behavior. Once farmers have made their de-
cision, macro-level phenomena (e.g. total amount of area converted by 
all villagers in this case) can be perceived by farmers. Those in return 
may influence farmers’ decisions for the next simulation period (time- 
step), thus new macro-level phenomena emerge thereafter (Galán et al., 
2009). 

ABMs can easily model peer interaction as one of the central ele-
ments in the theory of DOI, which is rarely considered by farm-level 
studies as shown in Fig. 1. ABMs have been used in various research 
fields such as geography, urbanization, agricultural land-use and polit-
ical science, etc. (Gilbert, 2007). In the field of agricultural economics, 
ABMs are used in modeling farmers’ decisions on crop selection, use of 
natural resources, adoption and diffusion of innovations, etc. (see a re-
view of Kremmydas et al., 2018). In this section, we will explore factors 

Table 2 
Search terms used and number of ABM studies identified.  

Group Search terms Number of 
studies 

1 TS = (“agent-based” OR “agent based” OR “abm” OR 
“multi-agent” OR “multi agent”) AND 
TS = (adopt* OR diffusion OR innovati* OR technolog*) 

5129 

2 TS = (“agent-based” OR “agent based” OR “abm” OR 
“multi-agent” OR “multi agent”) AND 
TS = (agricultur* OR farm* OR water OR crop) 

1293  

Combine 1 and 2 (by logical “AND”) 265 

Source: own results. 
Note: TS = Topics, referring to the title, abstract, or keywords of an article. 

1 Synthesized partially standardized coefficients of independent variables in 
models of adoption intensity are shown in Appendix 2. We don’t include them 
in the main text due to limited observations. 
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that are considered in current ABMs of agricultural innovations. 

3.1. Selection of ABM studies 

The literature research was conducted a final time on 05 May 2020 
using the Web of Science database. Search terms used and numbers of 

studies identified are presented in Table 2. Search terms of group 1 
require that ABM studies must investigate adoption or diffusion of 
technologies/innovations. Group 2 requires that ABM studies must be 
agriculture-related. So far, no ABMs of adoption and diffusion of pre-
cision or digital farming technologies are found. Thus, we did not limit 
our scope to this but also included other innovations (e.g. new practices, 

Fig. 3. Factors influencing adoption and adoption models in ABMs of agricultural innovations. 
(Source: own results) 
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crops, etc.) to get a better picture of farmers’ decision-making strategies 
of adoption and their limitations in current ABMs. The knowledge from 
farm-level adoption studies of precision and digital farming technologies 
and the knowledge from ABMs of diffusion of agricultural innovations 
are then combined to build the conceptual framework. 

The combination of group 1 and 2 (by logical “AND”) resulted in 265 
identified studies. After reading all 265 abstracts, we selected only 27 
ABM studies (Fig. 3) that explicitly modeled adoption or diffusion of 
agricultural innovations. The innovations covered by these studies 
include conservation practices and programs (8 studies, e.g. Sun and 
Müller, 2012), innovative crops (7 studies, e.g. Alexander et al., 2013), 
innovative farming systems like organic farming and multifunctional 
agriculture (6 studies, e.g. Kaufmann et al., 2009), irrigation technolo-
gies (5 studies, e.g. Berger, 2001), fertilizers (2 studies, e.g. Beretta et al., 
2018), and others. Note that the number of studies across all categories 
exceeds 27 because some articles include multiple innovations and are 
therefore counted as multiple times. 

3.2. Factors influencing adoption and adoption models in selected ABMs 

To compare factors considered in ABMs and in farm-level studies, we 
keep using the six categories summarized from empirical farm-level 
studies (see section 2), but replace “information sources” with “other 
types of agents” in the category “interactions” to better fit the structure 
of ABMs. Fig. 3 shows factors that directly affect the adoption decision 
process (i.e. triggers) and factors considered elsewhere (i.e. indirect 
factors) in the model, as well as the farmers’ adoption model of each 
ABM. Modeled factors including triggers and indirect factors are to a 
large extent influenced by the adoption model applied by each study. In 
Fig. 3, studies are ordered according to the similarity of their adoption 
models, so that the advantages and limitations of each type of adoption 
behavioral model can be clearly illustrated. 

Pure economic models (Ng et al., 2011; Sorda et al., 2013; Bell et al., 
2016) usually depend on data of farm characteristics to maximize 
farmers’ profit or utility. This type of model has one trigger for adoption 
i.e. profit/utility (marked at relative advantage in the category of “at-
tributes of technology”) and ignores other aspects. Some studies (Berger, 
2001; Berger et al., 2007; Carauta et al., 2018; Schreinemachers et al., 
2007, 2010) combine economic models with the threshold model, which 
divides farmers into Rogers’ five adopter groups (innovators, early 
adopters, early majority, late majority, and laggards) with percentages 
that work as “adoption thresholds” mimicking a contagion process 
(Rogers, 2003). Although this type of model allows for farmers’ inno-
vativeness triggering adoption in addition to economic determinants, it 
does not explicitly model direct interactions of farmers. Seven studies 
(Alexander et al., 2013, 2015; Cai and Xiong, 2017; Huang et al., 2016; 
Manson et al., 2016; Olabisi et al., 2015; Perello-Moragues et al., 2019) 
explicitly model the effects of neighbors’ information or opinion on the 
adoption decision of a farmer as well as economic determinants. 
Farmers’ psychological factors are usually investigated by cognitive 
models. Four studies (Kaufmann et al., 2009; Van Oel et al., 2019; Xu 
et al., 2018, 2020) use cognitive models where farmers’ psychological 
factors like attitude and subjective norms are the only triggers, while 
farm characteristics are to a great extent ignored. Two studies use the 
combination of economic and cognitive models (Brown et al., 2016; 
Chen et al., 2012). Typology models of Daloğlu et al. (2014a)2 and 
Sengupta et al. (2005) assign a probability of adoption according to 
some features (including farm size, farm income, age of the operator, 
land ownership, labor availability, information sources, etc.) of the 
agent, thus allow multiple triggers from different categories for adop-
tion. However, assigning the probability of adoption assumes farmers’ 
adoption decision is independent from each other once farmers’ features 
are determined. Farmers might be able to still interact in other parts of 

the simulation (e.g. on the land market), but their adoption decision 
would not be affected anymore by the others. The other four ABMs at the 
end of the list are less typical: Beretta et al. (2018) only model the impact 
of social networks on adoption based on the attributes of the low 
requirement for investment and knowledge about the innovation – new 
fertilizers; Holtz and Pahl-Wostl (2012) model diffusion on an aggre-
gated level using the Bass Model (Bass, 1969), in which the more 
widespread the technology is, the higher the probability that a farmer 
considers this technology, without any farm characteristics; the ABM of 
Schreinemachers et al. (2009) contains an econometric model that 
captures the influence of farm and farmer’ characteristics on adoption; 
and Sun and Müller (2012) integrate a machine learning algorithm into 
the ABM, while farmers’ perception (e.g. attitude) and the effect of 
neighbors are also captured. 

3.3. Limitations of ABM studies 

As can be seen from the shading patterns in Fig. 3, the current ABMs 
of diffusion of agricultural innovations are only loosely connected to 
farm-level findings. Limitations are listed by the following four 
observations. 

(1) Agent types and their interactions: most ABMs represent only a 
limited number of agent types. Other agent types highlighted in the 
theory of DOI (especially extensions and technology suppliers) are rarely 
considered. This is somewhat surprising given the general capacity of 
ABMs to explicitly model different agent types and heterogeneity within 
types (exceptions include Alexander et al., 2013 and Alexander et al., 
2015; Sorda et al., 2013; Cai and Xiong, 2017; and Manson et al., 2016). 
Rounsevell et al. (2012) propose a notion of human functional types 
(HFTs), which define an agent by three dimensions (i.e. role, preference 
and decision-making strategies), to generalize representations of actors 
and support the expansion of ABMs. The advantages of applying HFTs 
are demonstrated by Arneth et al. (2014). For example, based on HFTs, 
Holzhauer et al. (2019) further demonstrate how institutional agents at 
global and regional scales can be modeled to study the impact of in-
stitutions on land use change. Similar approaches can be adopted by 
ABM modelers who aim to study the impact of interactions among 
different types of agents on technology adoption. 

(2) Operator characteristics and psychological factors: ABMs 
lack the attention to farmers’ ability and confidence to handle the 
complexity of new technologies with respect to the adoption decision 
that farm-level studies show (exceptions are Kaufmann et al., 2009; Sun 
and Müller, 2012; Schreinemachers et al., 2007 and Schreinemachers 
et al., 2009; Holtz and Pahl-Wostl, 2012). Likewise, considerations of 
substantial investments into complex technologies are bound to the 
current stage of farmers’ life and farm succession, which can be well 
captured by ABMs, as the empirical findings regarding farmers’ age 
showed. Due to the complexity and high requirement of investment of 
digital farming technologies, farmers’ age, knowledge and self-efficacy3 

deserve more attention from ABMs. 
(3) Attributes of technology: ABMs usually only consider the 

change in profit by adoption (relative advantage) and overlook other 
attributes of innovations, except for Olabisi et al. (2015). Since 
compatibility, complexity and issue of data safety are becoming con-
cerns of farmers (Fig. 1), modelers could integrate these attributes of 
digital farming technology into ABMs by considering existing farm 
equipment, farmers’ knowledge and capacity, and risk preference. 

(4) Lack of consideration of institutions: ABMs have shown to be 
capable of explicitly modeling institutions like regulations (Ng et al., 
2011), social norms (Kaufmann et al., 2009) and beliefs (Sun and Müller, 
2012) that govern agents’ behavior, but only a few studies have 

2 See also Daloğlu et al. (2014b). 

3 A review of non-agricultural related technology diffusion ABMs revealed 
that psychological factors like perceived behavioral control and self-efficacy 
were modeled more frequently in those models. 
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Fig. 4. Conceptual framework for empirically grounded ABMs of adoption and diffusion of digital farming technologies. 
(Source: own illustration) 
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considered them as shown in Fig. 3. Here, the failure of ABMs to cover 
institutions does match the lack of attention of empirical studies, 
although regulations, laws and norms are influential for the acceptance 
of digital farming technologies (Barnes et al., 2019). Modeling institu-
tional agents allows important research questions related to the impact 
of governance structures and policy formulation (Rounsevell et al., 
2012) in determining the adoption and diffusion of digital farming 
technologies. 

4. A conceptual framework for empirically grounded ABM 

Having identified the loose ends of both strands of literature, we aim 
to build an empirically grounded conceptual framework for modeling 
adoption and diffusion of digital farming technologies of crop produc-
tion. As suggested by Weersink and Fulton (2020), adoption should be 
understood as a process with multiple stages. We apply the model of five 
stages in the innovation-decision process from the theory of DOI 
(Rogers, 2003), i.e. knowledge, persuasion, decision, implementation 
and confirmation (see an example of Zheng and Jia, 2017). Because 
adoption of digital farming technologies is not a short-term commitment 
with potentially substantial changes in input use and farm management, 
a reasoned action approach is supposed to better capture farmers’ de-
cision mechanisms (Kaufmann et al., 2009). Thus, we apply the TPB to 
conceptualize intention formation due to its success on predicting 
human behavior (Ajzen, 2012; Kaufmann et al., 2009). The TPB has 
been used in many ABMs of technology adoption outside the agricultural 
domain (see Schwarz and Ernst, 2009; Sopha et al., 2013; Jensen et al., 
2016; Rai and Robinson, 2015). Furthermore, the TPB makes it possible 
to model farmers’ intentions if actual adoption data is not available, 
which is a crucial factor for predicting the spread of new technologies 
via ABMs. In addition, our review of ABMs of adoption of agricultural 
innovations finds that only a few applications are motivated by social- 
cognitive theory (e.g. Kaufmann et al., 2009). Groeneveld et al. 
(2017) also attest a lack of such theories regarding ABMs of land use 
change. Thus, for ABM modelers, applying this framework can increase 
the empirical and theoretical foundation, model coherence and 
comparability of future ABMs. 

4.1. Description of the framework 

Fig. 4 presents how the model of five stages in the innovation- 
decision process and the TPB can be combined as a useful tool to 
model adoption of digital farming technologies. Here, we aim at a bal-
ance of integrating empirical farm-level evidence and system interac-
tion. Thus, we made a purposeful selection of empirical variables that 
are of importance and connect with system elements at the same time. In 
this way, our conceptual framework presents the holistic picture yet 
highlights important empirical factors (with red bold squares) that were 
shown to have considerable impacts by empirical studies. Evidence 
about impacts of other factors needs to be elucidated in future research. 
Different theories and categories of determinants are depicted in 
different colors (see the legend of Fig. 4). We present the factors in the 
category “psychological factors” (i.e. core concepts in the TPB) and the 
category “attributes of technology” (from the DOI) in detail because of 
their theoretical foundations in the respective frameworks, which are 
directly linked with farmers’ adoption decisions. Factors in the other 
four categories are collectively illustrated for clarity and simplicity. It 
shall be stressed here that it is not our intention to promote future 
models aiming to analyze adoption of digital farming technologies to 
explicitly represent all processes and factors depicted in our framework. 

It is rather meant as a systematization for making conscious specification 
choices in view of own specific objectives. The conceptual framework is 
explained below. 

(1) In the knowledge stage, a farmer becomes aware of a technol-
ogy’s existence and eventually gets interested in it. Knowledge (or 
awareness) about a new technology comes from “interactions” including 
learning from other agents and obtaining information from other sour-
ces (Rogers, 2003). Interactions themselves influence the observability 
of digital farming technologies by e.g. farm visits, which likewise impact 
a farmers’ knowledge (Kuehne et al., 2017). The stage of knowledge can 
usually be modeled through the spreading of information in a social 
network (see Beretta et al., 2018). 

(2) The persuasion stage is where a farmer ascertains the potential 
value of adoption. The TPB postulates that a person’s intention is 
determined by attitude, subjective norm, and perceived behavioral 
control. Attitude, in our case, is a farmer’s positive or negative evalu-
ation of adoption. It is influenced by farmer’s assumptions about the 
relative advantage, compatibility of the technology to the existing farm 
equipment (see Shiau et al., 2018), and data safety of the technology. 
Relative advantage (especially profitability) depends on the cost and 
benefit of the technology, farm characteristics and input and output 
markets (see the grey dotted box) from an economic perspective (Rob-
ertson et al., 2012). Compatibility refers to the technical adaptability of 
the innovation to the existing equipment and practices in the farming 
system (Robertson et al., 2012). Subjective norm is the perceived level 
of approval or disapproval of adoption by “important others” (Kaufmann 
et al., 2009). It does describe a receptiveness to normative sanctioning 
rather than the prescription or prohibition conveyed by a norm (Rasch 
et al., 2016). It is influenced by policies (connected with “institutions”) 
and social norms in farmers’ social networks. Social norms are influ-
enced by institutions and interactions (mainly with respected farmers 
and consultants) (Pino et al., 2017). Perceived behavioral control 
refers to a farmer’s believed ability to implement adoption. It is influ-
enced by a farmer’s financial ability, complexity, and trialability of the 
technology. Farmers’ financial ability depends on both incomes 
(included in operator characteristics) and subsidy/credit accessibility 
(included in “institutions”) (Pino et al., 2017). Perceived complexity 
depends on operator characteristics, especially their knowledge and 
capacity, which might change through interactions in social networks. 

(3) After the persuasion stage, where intention is formed, a farmer 
decides to adopt or reject at the decision stage. This can be done by 
setting a threshold of intention for adoption and using either deter-
ministic or probabilistic decision models (Kaufmann et al., 2009; Ng 
et al., 2011). The latter might be constructed along observed adoption 
rates in farm populations. 

(4) The implementation stage is where production activities of a 
farm are carried out based on the farmer’s adoption decision. For 
example, a farm produces with the objective of maximizing the profit 
subject to farm endowments (including machinery) and environmental 
regulations. Farm-level production activities, potentially influenced by 
the new technology if it is adopted, largely depend on the input market 
and contribute to the output market. In the long run, changes in markets 
influence characteristics of farms and lead to structural change (Appel 
et al., 2016). The link between the input market and “interactions” refers 
to the fact that technology providers, suppliers and contractors are 
participating in the input market. Furthermore, production activities 
impact on the environment and type and severity of the impact depend 
on the technology used (Weersink and Fulton, 2020). Changes in the 
environment affect a farm’s options of cultivation, for example by 
changing soil productivity (Aubert et al., 2012; see connection with 
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“farm characteristics”). Environmental pressures may induce policy- 
makers to adjust regulations (Berger et al., 2007; see connection with 
“institutions”), and influence the behavior of other agents in the system 
(Sun and Müller, 2012; see connection with “interactions”). 

Note that “implementation” stage is optional to model, depending on 
whether effect of adoption on production, market, or environment 
should be analyzed or not. Some ABMs stop after observing adoption 
rate at “decision” stage (e.g. Kaufmann et al., 2009). But including 
“implementation” stage and next stage (“confirmation”) completes the 
theoretical cycle of adoption. 

(5) The confirmation stage refers to an evaluation based on 
whether the criteria initially set up for adoption/rejection has been met. 
The farmer confirms if the technology will be considered for the next 
simulation period according to the performance of the technology and 
the investment cost. This implies that dis-adoption and mal-adoption are 
allowed. Farmers’ evaluations are input for technology providers 
(included in “interactions”) such that they can improve some attributes 
of the technology (see the connection between the green dotted box and 
“interactions”). Xu et al. (2020) provide a good example illustrating how 
the confirmation stage can be modeled. 

4.2. Applying the framework 

This framework can be applied in studies investigating impacts of 
policy measures (such as subsidy to procure and regulations of data 
safety), technology attributes (such as price and compatibility), and 
interactions in social networks (such as extensions and contractors) on 
farmers’ adoption decision on regional level. As results of such studies 
will not only improve our scientific understanding of the relevant pro-
cesses, its application may also inform policy-makers about the potential 
impacts of policy intervention by scenario development or modeling 
outcomes. A specific application could be to assess the environmental 
and economic impacts of adoption and diffusion of mechanical weeding 
robots and how these are influenced by pesticide policies. 

It is worth noting that the implementation of this framework will 
require a more detailed specification in the context of the specific 
technology, region, and policy to be analyzed. Such more detailed 
specifications comprise the quantification and aggregation of farmers’ 
attitude, subjective norm and perceived behavioral control (Schlüter 
et al., 2017), the identification of the main processes of interaction be-
tween farmers and other types of agents, and decisions on how other 
farmers’ decisions (e.g. on production level and intensity) interact with 
the adoption and diffusion process and its impacts. A specific application 
benefits from the general setup of the framework but the context pro-
vides what matters more and what less. 

5. Conclusion 

To build an empirically grounded conceptual framework for 
modeling adoption and diffusion of digital farming technologies, this 
paper combines knowledge of technology adoption generated from 
empirical farm-level adoption studies and ABMs simulating systemic 
diffusion mechanisms. 

We first review 32 empirical farm-level studies on the adoption of 
precision and digital farming technologies. Results show that the ma-
jority of farm-level studies focus on farm and operator characteristics, 
while only a few recent studies highlight the importance of attributes of 
technology (e.g. compatibility to existing farming equipment, 
complexity and data safety), institutional and psychological factors. To 
compare the importance of determinants for adoption, we calculate their 

partially standardized coefficients. Our analysis shows that among the 
most frequently investigated factors, farm size has the largest average 
importance, followed by education, while age does not seem to be a 
linear predictor for adoption, because of its varying and inconsistent 
impacts found by various studies. Thus, further investigation is needed 
to find out whether age influences adoption of digital farming technol-
ogies through farmers’ other characteristics (e.g. experience, innova-
tiveness, and risk preference) or because of farmers’ life stages. 
Although the observations of psychological factors and attributes of 
technology are limited, their consistency and high level of importance 
remind us that they could be useful predictors for farmers’ adoption 
decisions. To obtain more evidence, future adoption studies of digital 
farming should explore the impacts of psychological factors and attri-
butes of technology on adoption (especially the potential impact of data 
safety). 

Due to the limitation of farm-level studies not capturing linkages 
between determinants and feedback within the complex adaptive sys-
tem, we further review 27 ABMs of diffusion of agricultural innovations. 
We find that current ABMs of agricultural innovations only loosely 
connect with empirical farm-level findings, despite their usefulness for 
representing system interaction. They are quite limited with respect to 
modeling various types of agents, and are largely characterized by profit 
maximization while rarely modeling farmers’ knowledge/capacity, 
psychological factors, attributes of technology and institutional ar-
rangements. While ABMs are well aligned with the theory in terms of 
endogenous macro-phenomena postulated by the theory of diffusion of 
innovation, they are not well-grounded in empirical details yet. This 
latter weakness might be a characteristic of ABMs of agricultural in-
novations just recently evolving from the early toy and proof of concept 
models to more empirically tuned ones. A natural next step in this 
evolution is to consider the wealth of research found in the empirical 
farm-level adoption studies. 

Based on the loose ends between both literature strands, we present a 
conceptual framework integrating farm-level evidence and system 
interaction for modeling adoption and diffusion of digital farming 
technologies in crop production. The framework is aligned with the 
theory of diffusion of innovation and with the theory of planned 
behavior. It uses well researched farm-level adoption determinants from 
a system perspective and connects important factors based on empirical 
evidence. 

To the best of our best knowledge, this work constitutes the first 
proposal for a conceptual framework for adoption and diffusion of 
digital farming technologies in crop production. It improves our current 
understanding of mechanisms of adoption and diffusion of digital 
farming in this context. Our framework also serves as a reference for 
future ABMs capable of integrating empirical evidence and system dy-
namics holistically. Applying this framework can increase the empirical 
and theoretical foundation, model coherence and comparability of 
future ABMs. Furthermore, the framework provides structural hypoth-
eses that can be examined by researchers who aim to understand 
farmers’ decision-making of adoption using farm-level approaches or by 
those who investigate diffusion mechanisms of digital farming tech-
nologies using complex systems approaches. 

There are some limitations in this study that could be addressed in 
future research. First, we reviewed adoption studies of generic precision 
and digital farming technologies in crop production. This leads to a 
fairly broad conceptual framework containing factors that might not be 
relevant for some specific technologies. Focusing on specific technolo-
gies (e.g. mechanical weeding robots) will allow to start from this gen-
eral framework but require to specify the contextual relevance of the 
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determinants. 
Second, our conceptual framework is only based on a limited number 

of studies available at this time. This causes uncertainty regarding the 
importance of mostly unexplored factors such as institutions and social 
networks to farmers’ adoption decision. We suggest to tackle these 
context-specific issues with the future development of diagnostic pro-
cedures (Cox, 2011) going hand in hand with our framework to deliver 
clear-cut interpretations for institutions and network types. 

Last but not least, the proposed framework is largely based on the 
existing theories (i.e. DOI, TAM, and the TPB) applied in the reviewed 
studies. These theories have certain limitations. Lyytinen and Dam-
sgaard (2001) question the completeness of the list of technology at-
tributes defined by the DOI and whether all innovations should be 
characterized with the same set of attributes. TAM is criticized because it 
ignores the social influence on adoption (Beldad and Hegner, 2018). 
Frequently reported limitations of the TPB include its predictive val-
idity, rationality assumption, and omitting the effect of habits and 
emotions among others (Ajzen, 2011). Therefore, these theories might 
need to be adjusted when dealing with different technologies in different 
social and political contexts. 
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Appendix 1. Selected empirical farm-level studies of technology adoption  

No. Study Technology type Research Region Method 

1 Adrian et al. (2005) precision farming USA structural equation 
model 

2 Asare and Segarra (2018) precision farming USA probit model 
3 Aubert et al. (2012) precision farming Canada partial least squares 
4 Barnes et al. (2019) precision farming Belgium, Germany, Greece, the Netherlands 

and the UK 
logit model 

5 Boyer et al. (2016) precision farming USA probit model 
6 Caffaro and Cavallo (2019) smart farming Italy structural equation 

model 
7 D’Antoni et al. (2012) precision farming USA logit model 
8 Drewry et al. (2019) digital farming USA descriptive analysis 
9 Gallardo et al. (2019) precision farming USA probit model 
10 Isgin et al. (2008) precision farming USA logit and poisson 

models 
11 Kutter et al. (2011) precision farming Germany descriptive analysis 
12 Lambert et al. (2014) precision farming USA logit model 
13 Lambert et al. (2015) precision farming USA logit model 
14 Larson et al. (2008) precision farming USA logit model 
15 Lencsés et al. (2014) precision farming Hungary ANOVA test 
16 Lynne et al. (1995) Micro-drip irrigation USA tobit model 
17 Michels et al. (2020) smart phone in farming Germany logit model 
18 Mitchell et al. (2018) precision farming Canada descriptive analysis 
19 Paustian and Theuvsen (2017) precision farming Germany logit model 
20 Pedersen et al. (2004) precision farming Denmark descriptive analysis 
21 Pino et al. (2017) water-saving measures (micro-drip, sprinkling irrigation, 

plastic sheeting) 
Italy structural equation 

model 
22 Pivoto et al. (2019) smart farming Brazil logit and poisson 

models 
23 Pokhrel et al. (2018) precision irrigation USA poisson model 
24 Reichardt and Jürgens (2009) precision farming Germany descriptive analysis 
25 Robertson et al. (2012) precision farming Australia logit model 
26 Salimi et al. (2020) automation Iran structural equation 

model 
27 Schimmelpfennig and Ebel 

(2016) 
precision farming USA probit model 

28 Takácsné György et al. (2018) precision farming Hungary descriptive analysis 
29 Tamirat et al. (2017) precision farming Denmark and Germany logit model 
30 Vecchio et al. (2020) precision farming Italy logit model 
31 Walton et al. (2008) precision farming USA probit model 
32 Zheng et al. (2018) unmanned aerial vehicles China probit model  
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Appendix 2. Partially standardized coefficients of factors from models with binary outcome

Source: own results. 
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Daloğlu, I., Nassauer, J.I., Riolo, R., Scavia, D., 2014a. An integrated social and 
ecological modeling framework—impacts of agricultural conservation practices on 
water quality. Ecol. Soc. 19 (3), 12. https://doi.org/10.5751/ES-06597-190312. 
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