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Abstract: Soil texture is a key soil property influencing many agronomic practices including fer-
tilization and liming. Therefore, an accurate estimation of soil texture is essential for adopting
sustainable soil management practices. In this study, we used different machine learning algorithms
trained on vis–NIR spectra from existing soil spectral libraries (ICRAF and LUCAS) to predict soil
textural fractions (sand–silt–clay %). In addition, we predicted the soil textural groups (G1: Fine,
G2: Medium, and G3: Coarse) using routine chemical characteristics as auxiliary. With the ICRAF
dataset, multilayer perceptron resulted in good predictions for sand and clay (R2 = 0.78 and 0.85,
respectively) and categorical boosting outperformed the other algorithms (random forest, extreme
gradient boosting, linear regression) for silt prediction (R2 = 0.81). For the LUCAS dataset, categorical
boosting consistently showed a high performance for sand, silt, and clay predictions (R2 = 0.79, 0.76,
and 0.85, respectively). Furthermore, the soil texture groups (G1, G2, and G3) were classified using
the light gradient boosted machine algorithm with a high accuracy (83% and 84% for ICRAF and
LUCAS, respectively). These results, using spectral data, are very promising for rapid diagnosis of
soil texture and group in order to adjust agricultural practices.

Keywords: textural group; fine, medium and coarse texture; vis-NIR spectrum; dry chemistry;
chemometrics; machine learning

1. Introduction

Soils provide several ecosystem services to support human needs; however, due to the
rapid growth of the human population, soils are facing unprecedented pressure through
the intensification of agricultural production [1]. Therefore, monitoring the soil status
is crucial to support sustainable and high agricultural productivity. Soil analysis is an
important key factor for sustainable soil management, as it provides a valuable information
about the soil condition prior to making recommendations regarding fertilization, and
irrigation, and subsequently improving soil productivity. Gathering precise and detailed
information on the soil is essential for crop yield increase [2]. There are many chemical,
physical, and biological properties that can affect the soil quality and its function within an
agricultural production system [3]. Soil texture, which represents the relative composition
of particle sizes (sand: 0.05 to 2 mm, silt: 0.002 to 0.05 mm, and clay: ≤0.002 mm [4]), is
one the fundamental physical properties. Soil texture usually shows significant spatial
variation within a land area. There are many processes affected by soil texture, including
plant growth and yield, water retention and infiltration, availability and absorption of plant
nutrients, soil organisms and plant root growth, soil quality and productivity, soil tempera-
ture, soil compaction, tillage, and the efficiency of fertilizer use and irrigation water [5].
Considering variations in soil texture within a field is now possible with global positioning
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system (GPS) and precision agriculture (PA). The aim of these technologies is to divide the
field into homogenous management zones suitable for optimal site-specific management of
fertilization [6], liming [7], and drainage and irrigation [8]. Consequently, recommending
the same management practices irrespective to the textural group can lead to unwanted
high crop yield variability. Considering the soil textural group is also necessary to deter-
mine the field sampling frequency [9] and sample preparation techniques [10,11]. Precision
agriculture, which involves modifying field interventions based on texture, requires a large
number of samples to be tested in laboratories.

Laboratories use conventional methods of soil texture testing, such as sieving, hy-
drometers, and Robinson pipette [12], but such methods are time-consuming, expensive,
destructive, require hazardous chemical extractants, and are not suitable for the large
number of sample analyses required by precision agriculture. To overcome this obstacle,
visible (Vis) and near infrared (NIR) soil analysis techniques have been used as quick,
non-destructive, and less expensive soil analysis methods. These methods are efficient
for analyzing the large number of samples required for high resolution soil mapping [13].
Over the last few decades, there has been a growing focus on spectral methods, especially
with the increasing demand for precision agriculture tools to assist characterization of
soils effectively [14,15]. Lately, the application of machine learning (ML) algorithms in soil
science has increased. Recent studies used several ML approaches (e.g., support vector
machine, artificial neural networks, random forest, partial least squares, and cubist regres-
sions) for predicting soil texture [16,17]. Moreover, ML approaches have paved the way to
handle large datasets and produce more accurate predictions of soil properties [18]. Over
the last decade, several soil health and safety monitoring research efforts have led to the
development of large soil libraries, such as the Land Use/Land Cover Area Frame Survey
(LUCAS) [19] and the World Agroforestry Centre (ICRAF) that was established by the In-
ternational Soil Reference and Information Centre (ISRIC) [20]. These two libraries contain
the results of both physical and chemical soil analyses and their vis-NIR spectral signatures.
The objective of our study is to use these two libraries, covering a wide range of soils in
several countries, to develop a procedure to predict soil textural fractions and groups.

2. Materials and Methods
2.1. Description of Soil Datasets

Both datasets (LUCAS and ICRAF) contain vis-NIR spectral and chemical data from
different locations in many countries. LUCAS is a large-scale vis-NIR soil dataset with
19,967 soil samples collected from 23 member states of the European Union under the Land
Use/Land Cover Area Frame Survey (LUCAS) that started in 2009 [19]. The standard
sampling procedure used around 0.5 kg of topsoil (0–20 cm), which is a composite sample of
five subsamples. The first subsample represents the central georeferenced sampling location
characterized by the LUCAS point, and the other four subsamples were collected in a cross-
shape at 2 m from the central point. These soil samples were dried, sieved, and subjected
to spectral measurements using a FOSS XDS Rapid Content Analyzer (NIRSystems, Inc.,
Laurel, MD, USA), operating with wavelengths ranging from 400 to 2500 nm and a spectral
resolution of 0.5 nm. The LUCAS dataset includes various soil properties, such as: coarse
fragment percentage, particle size distribution (% of sand, silt, and clay), organic carbon,
pH, carbonate content, cation exchange capacity, N, P, extractable K, and metals. The
standard analytical methods of soil properties used the ISO methods [21]. The vis-NIR
analyses followed the procedure described by the FOSS spectroscope [22].

The ICRAF dataset is composed of 4438 soil samples selected from the soil information
system (ISIS) of the International Soil Reference and Information Centre [20]. This library
represents soil samples from 58 countries around the world (Africa, Asia, South America,
North America, and Europe) [20]. These soil samples were air-dried, clod crushed, and
sieved at 2 mm. Soil properties of pH, OC, CEC, exchangeable (K, Ca, Mg), sand, silt, and
clay content were determined according to the IRSIC procedures for soil analysis [21]. For
the spectral analysis, the soil samples were scanned using a FieldSpec FR spectroradiometer
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(Boulder, CO) at spectral wavelengths ranging from 350 to 2500 nm, with a spectral
resolution of 1 nm. Figure 1 shows the raw spectra for soil samples of the LUCAS and
ICRAF datasets.
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Figure 1. Raw soil spectra for both datasets showing the reflectance against wavelength (nm): (a) LUCAS-ESDAC
(19,967 samples); (b) ICRAF-ISRIC (4438 samples).

2.2. Pre-Processing of Raw Spectra

Pre-processing of spectral data is usually a required step to improve data quality be-
fore modeling. This pre-processing step aims at removing undesirable physical phenomena
and increasing the signal resolution, as well as maximizing the quality of subsequent data
processing. In this study, five spectral pre-processing methods (first derivative, second
derivative, continuum removal, detrend, and standard normal variate) were applied on
both datasets as shown in Figure 2. The spectral data pre-processing methods were im-
plemented in R using the “prospectr” package [23]. The estimation of the three textural
fractions of soil were performed with the h2o AutoML algorithm [24] using the R software
(Version 3.0.2) [25]. The best performing pre-processing technique was used for the follow-
ing steps on the study. The first (1st Der) and second (2nd Der) derivatives can be used to
remove the vertical offsets and linearly sloping baselines to produce low error calibration.
Converting the raw spectra to 1st Der or 2nd Der aims at accentuating the reflectance
features. The 1st Der is effective for removing baseline offset; the 2nd Der is effective for
both the baseline offset and linear trend from a spectrum [26,27]. Derivatives also remove
both additive and multiplicative effects on the spectra. Continuum removal (CR) was
used as a normalization procedure prior to features quantification [28]. Detrend correction
(DT) was applied to remove the baseline shifts and curvilinearity. Standard normal variate
(SNV) was used to remove the scatter interferences and differences and correct the global
intensity effect [29]. A detailed description of these pre-processing methods can be found
elsewhere [26].



Agronomy 2021, 11, 1550 4 of 17

Agronomy 2021, 11, x FOR PEER REVIEW 4 of 17 
 

 
 

Figure 2. Methodology flowchart: (a) the five pre-processing techniques; (b) machine learning



Agronomy 2021, 11, 1550 5 of 17

models calibration including data splitting into three sets: calibration (70% of data), validation (15%
of data) and testing (15% of data) and linear correction of biased residuals to predict the three soil
texture fractions (sand, silt, and clay %).

2.3. Machine Learning Algorithms for the Prediction of Clay, Silt and Sand Fractions

Using spectral libraries with machine learning is important because it can analyze
more data while delivering faster and more accurate results and help agricultural, environ-
mental and ecosystemic services to strengthen their capacity to estimate soil properties and
intensify soil characterization.

This modeling process is aimed at obtaining the particle size fractions by analyzing
the spectral features contained in the spectrum acquired using the spectroradiometer
scanning of a sample. As a soil spectral signature produces a very large number of spectral
data (1250 pairs of wavelength and corresponding reflectance) and reflectances are often
autocorrelated, machine learning procedures are the most appropriate option to correlate
these 1250 input parameters with a single output factor: a particle size fraction (clay, silt,
or sand).

Three steps are required to build a machine learning model: (i) selection of a machine
learning algorithm, (ii) training the algorithm on large datasets to create a model that
converges to an optimal accuracy, and (iii) validating the performance of the resulting
model on a testing dataset.

These machine learning models must be constantly calibrated as the size of the
database increases to maintain the most powerful and accurate estimates.

In this study, five machine learning algorithms were used, i.e., random forest (RF),
categorical boosting (CatBoost), extreme gradient boosting (XGBoost), linear regression
(LR) and multilayer perceptron (MLP). A brief description of these machine learning
models follows.

Random forest (RF) is an ensemble learning technique that uses a combination of
classification tree predictors to give predictions for the response variable [30]. Each tree is
constructed from a bootstrap sample of the dataset and uses a randomly selected subset
of the variables from the candidate set of input variables that is generated at each split of
data. Therefore, for tree building, random forest uses both bagging (bootstrap aggrega-
tion) [31], a method for combining unstable learners, and random variables selection. RF
algorithm can handle both categorical and continuous variables. RF has a good capability
for high-dimensional data processing while avoiding overfitting, and it can be used for
both classification and regression tasks.

Categorical boosting (CatBoost) is a gradient boosting decision tree (GBDT), which
uses binary decision trees as base predictors [32]. CatBoost uses a symmetrical adopted
tree model to reduce over-fitting and enhance the model’s generalizability. Moreover, it
avoids the problems of gradient bias and prediction shift.

Extreme gradient boosting (XGBoost) [33] is a scalable tree boosting system that imple-
ments a generalized gradient boosting method including an additional regularization term.
The regularization term aims to smooth the final learned weights to avoid over-fitting, and
to yield accurate models. In addition, parallel calculations are automatically executed for
the functions during the training step [34]. This algorithm comes with several improve-
ments in multithreaded processing and optimization function to improve calculation speed
and reduce over-fitting events as well.

Linear regression (LR) is a machine learning algorithm used to represent the relation-
ship between independent variables and one dependent variables (simple linear regression)
or more than independent variables (multiple linear regression). This linear regression es-
tablishes a mathematical model to study and describe a given real-world phenomenon [35].

Multilayer perceptron neural network (MLP) is a class of feedforward artificial neural
network (ANN) with a backpropagation algorithm for training. MLP consists of one
or more hidden layers between the input and output layers. The hidden layers contain
multiple neurons mimicking the biological nervous system [36]. The input signal starts
with input nodes and propagates to the output node in the forward pass. The output
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calculation in each node is performed layer-by-layer by multiplying it by a weight factor
called a synaptic weight. After performing the forward pass calculations, an error is
calculated in the backward pass using a loss function [37]. The advantages of MLP is
that it has a strong nonlinear fitting ability and can map arbitrarily complex nonlinear
relationships [38].

2.4. Development of Predictive Modeling Process

Figure 2 presents the workflow of the applied methodology. All data were randomly
split into three parts: 70% for calibration or training, 15% for validation, and 15% for
testing using GroupShuffleSplit from scikit-learn [39]. The calibration set is used to learn
the parameters of the model: it consists in estimating one granulometric fraction (clay,
silt, or sand) according to the reflectances of the vis-NIR spectrum. This step is used to
train the chosen algorithm. The validation set is used to avoid introducing any artifact in
the prediction results when using the training dataset. This validation adjusts the model
hyperparameters to avoid overfitting, a very common phenomenon in prediction model
training. The test dataset acts as independent data and is used to verify the performance
of the prediction results. In order to avoid the effect of a random seed, the random split
was performed 30 times with different seeds. Therefore, for illustrative purposes, the seed
chosen in this study is the one giving results closer to the average values of R2 (Equation (1))
and RMSE (Equation (2)) obtained by the 30 prediction models.

R2 = 1 − ∑n
i=1(ŷi − yi)

2

∑n
i=1( y − yi)

2 (1)

RMSE =
√

∑n
i=1(ŷi − yi)

2/n (2)

where R2 is the coefficient of determination, RMSE is the root mean squared error, ŷi is the
predicted value of the ith observation, y is the mean measured value, yi is the measured
value of the ith observation, and n is the number of samples.

To correct the residual error (bias adjustment) and ensure unbiased predictions, the
observed residuals from the validation model were used to linearly correct the bias [40].
This correction step was only used for prediction of the soil textural fractions.

2.5. Machine Learning Models for Predicting Fine (G1), Medium (G2), and Coarse (G3)
Textural Groups

Since both soil libraries ICRAF and LUCAS contain the spectral and chemical mea-
surements of soils, we used the seven available chemical measurements (NTotal, Pavailable,
Kexchangeable, Caexchangeable, Mgexchangeable, CaCO3, pHwater, OC) for LUCAS and the five
available measurements (Kexchangeable, Caexchangeable, Mgexchangeable, pHwater, OC) for ICRAF.
The inclusion of these chemical measurements in the spectral measurements in the cali-
bration model is intended to enhance the performance of the textural group prediction. In
contrast to the predictions of the size fractions (clay, silt, and sand), which are quantitative
features and have shown a better affinity with regression algorithms such as MLP and
CatBoost, the textural groups (G1, G2, and G3) are categorical variables, which require
classification algorithms, such as the light gradient boosting machine (LightGBM). The
LightGBM is a model applying gradient-based one-side sampling (GOSS) and exclusive
feature bundling technologies [4]. Unlike the conventional GBM tree splitting method,
LightGBM uses the GOSS method to identify the observations that can be used for comput-
ing the split. LightGBM has the advantages of reducing memory usage while increasing
the training speed. In addition, it produces much more complex trees by following a
leaf-wise split approach rather than a level-wise approach, which is the main factor in
achieving higher accuracy, and it is capable of handling large-scale data. LightGBM con-
tains two novel techniques, namely gradient-based one-side sampling and exclusive feature
bundling, to deal with large numbers of data instances and large numbers of features,
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respectively [41]. We used this algorithm to train predictive models for classification of
the three textural groups of soil. Many research studies have used auxiliary information
derived from different data sources to improve the prediction of soil properties [42,43].
Textural groups are based on the Canadian system of soil classification (Figure 3).
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2.6. Data Analysis Platform

All of the models were implemented in python 3.9 using the packages “sklearn” [39],
“xgboost” [33], “CatBoost” [32], and “LightGBM” [41]. In addition, “NumPy” [44] was used
for math calculations and “pandas” for dataset manipulation [45]. The “plotly” package
was used to generate graphs.

2.7. Model Evaluation

To evaluate the performance and accuracy of prediction models for the three soil
textural fractions, four parameters were used; the coefficient of determination (R2), the
root mean squared error (RMSE), and the slope and intercept of predicted versus observed
values [46]. Li et al. [47] proposed a classification criterion for R2 values: R2 < 0.50
(unacceptable prediction), 0.50 ≤ R2 < 0.75 (acceptable prediction) and R2 ≥ 0.75 (good
prediction). The same criterion was applied in the current study.

For the three textural groups (G1, G2, G3) we used a normalized confusion matrix
and visualized it using the “seaborn” package [48] in python 3.9. The performance index
in classifying the soil textural groups was evaluated by calculating the accuracy, ranging
from 0 to 100% (Equation (3)), which represent the ratio between the number of correctly
classified cases over the total number of properly and wrongly classified cases.

Accuracy =
correctly classified

Total : correctly and incorrectly classified
(3)
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3. Results and Discussion
3.1. Performance of Pre-Processing Techniques

Table 1 shows the five pre-processing techniques applied to the raw vis-NIR spectra.
The results show that the first derivative is the best for ICRAF and LUCAS. Therefore,
the first derivative spectrum was used for the prediction models of sand, silt, and clay.
This choice was based on the four evaluation criteria that reflect the consistency between
predicted and measured values when using the testing data. The model performed better
when the slope (m) and the coefficient of determination (R2) were closer to 1.0, and the
intercept (a) and the RMSE were closer to 0.

Ben-Dor et al. [49] reported that the first derivative of the spectra improved spectral
information and showed spectral changes better. Moreover, our results agree with other
research studies. Gerighausen et al. [50] pointed out that the first derivative of the spectra
gave the best prediction results for the soil clay and organic carbon content.

In general, there are several baseline removal methods available, such as spectral
derivative transformations (first and second derivative), which is one of the best methods
for removing baseline effects [27]. Rinnan et al. [26] reviewed the most applied spectral
pre-processing techniques for near-infrared spectrometry. They concluded that the first
derivative is very effective for removing the baseline offset. Therefore, the first derivative
technique was selected in this study as the pre-processing method for the following steps.
Compared to the raw spectra that give unacceptable prediction results according to the
classification of Li et al. [47] with R2 mostly around 0.47 for sand and silt and 0.65 for clay,
the first derivative transformation of these spectra contributed to increase the robustness
of the prediction models by over 20% (Table 1). Even though the two databases are very
different in size and origin, the prediction results were comparable for both the raw and first
derivative transformed spectra (Table 2). The prediction from the first derivative spectra
was significantly higher for clay than for the other two particle size fractions with the
highest R2 and slopes and the lowest intercepts and RMSE. Therefore, it may be concluded
that spectrometry is more adapted to clay fraction than to silt and sand fractions.

Table 1. The performance of five pre-processing techniques for prediction of sand, silt, and clay on the ICRAF and
LUCAS datasets.

Soil Property Pre-Processing

ICRAF LUCAS

Testing Set Testing Set

R2 * RMSE * Intercept Slope R2 * RMSE * Intercept Slope

Sand

Spectra 0.47 21.00 20.06 0.469 0.52 17.83 20.28 0.516
1st Der 0.73 14.77 10.03 0.734 0.66 14.83 14.01 0.669
2nd Der 0.71 15.38 10.79 0.717 0.67 14.61 13.56 0.676

CR 0.61 17.89 14.91 0.609 0.54 17.41 19.31 0.534
DT 0.61 17.87 14.84 0.617 0.58 16.70 18.10 0.574

SNV 0.62 17.61 14.60 0.626 0.59 16.38 16.95 0.599

Silt

Spectra 0.47 14.49 15.51 0.468 0.47 13.13 20.39 0.475
1st Der 0.71 10.62 8.37 0.712 0.60 11.44 15.61 0.599
2nd Der 0.71 10.65 8.42 0.712 0.62 11.13 14.56 0.625

CR 0.62 12.16 11.11 0.622 0.51 12.77 19.03 0.505
DT 0.62 12.10 10.79 0.633 0.51 12.69 19.02 0.512

SNV 0.58 12.78 12.24 0.587 0.51 12.67 18.50 0.518

Clay

Spectra 0.65 13.03 11.42 0.651 0.65 7.610 6.643 0.656
1st Der 0.81 9.63 6.29 0.807 0.80 5.760 3.990 0.795
2nd Der 0.77 10.41 7.24 0.773 0.73 6.672 5.316 0.729

CR 0.71 11.83 9.57 0.711 0.57 8.444 8.320 0.571
DT 0.70 12.16 10.10 0.691 0.67 7.376 6.259 0.673

SNV 0.72 11.41 8.92 0.720 0.74 6.566 5.065 0.750

* R2, coefficient of determination; RMSE, root mean square error.
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Table 2. Best prediction accuracy of sand, silt and clay for both datasets ICRAF and LUCAS.

Soil Textural Fraction SSL * Model R2 * RMSE * Slope (m) Intercept (a)

Sand
ICRAF

MLP 0.78 13.55 0.99 0.29
Silt CatBoost 0.81 8.45 0.99 0

Clay MLP 0.85 8.77 0.99 0.62

Sand
LUCAS

CatBoost 0.78 11.77 0.99 0.33
Silt CatBoost 0.76 8.68 0.98 0.57

Clay CatBoost 0.85 4.99 1.01 −0.3

* R2, Coefficient of determination; RSME, root-mean-square error; SSL, soil spectral library.

3.2. Soil Fractions Prediction and Bias Correction

Table 2 shows the results that yielded the best validity (measured vs. predicted)
among the five models used with both datasets, ICRAF and LUCAS, compared to the
models without bias corrections (Supplementary Tables S1 and S2). This validity assesses
the degree of association between the three particle size fractions (clay, silt, and sand)
measured by standard techniques (hydrometer or Robinson pipette) and those derived
by examining the signal spectrum obtained by spectral scanning of the soil samples by
artificial intelligence. In a two-dimensional graph representing the real values on the
abscissa (e.g., measured percentage of clay) and the predicted values on the ordinate
(predicted percentage of clay), we fitted a linear regression to the testing dataset. This linear
regression model shows the four performance criteria (Table 2): robustness (R2), accuracy
(slope, m), sensitivity (intercept, a) and precision (RMSE). Using these four performance
criteria, CatBoost was found to be the best in predicting the three particle size components
for the LUCAS dataset. Its R2 values ranged from 0.76 to 0.85, its m-slopes were close
to 1 (high accuracy), its a-intercepts were low at 0–0.57% (low sensitivities), and it had
low RMSEs of 4.99–11.77. These results show that MLP appears to have performed better
than CatBoost for the prediction of sand and clay with the ICRAF testing dataset. MLP
showed a R2 robustness of 0.78–0.85, m accuracies of 0.99; for the intercept, a, it showed a
low sensitivity of 0.29–0.62%, and it had a RMSE of 8.77–13.55. It appears that CatBoost is
best suited for LUCAS sand. MLP works best with ICRAF databases. According to the R2

classification of Li et al. [48], it can be stated that all predictions of the three particle size
components (clay, silt, and sand) in the two databases LUCAS and ICRAF are considered
good, and thus satisfactory to adopt as alternative methods of soil scanning to deduce their
particle size composition.

Figure 4 shows all clay prediction results for the ICRAF dataset. These are the four
criteria of prediction performance through the linear regression between the predicted
and measured values in the training (Figure 4a), validation (Figure 4b), and testing
(Figure 4d) datasets. In the same figure, the linear bias on the residuals of the validation
dataset (Figure 4c) was used to correct the results in the testing dataset (Figure 4e).
Accounting for the linear bias of the prediction residuals (predicted vs. measured
residuals) as a function of the percentage of clay according to the equation Y = 0.235X–
4.54 (Figure 4c), the predictions were improved significantly. Compared to the validation
results (Figure 4b), the linear bias correction helped to increase the R2 by 0.07, the slope m
by 0.24, and sensitivity or intercept a by 4%. In Figure 4e, prediction in the corrected testing
can be seen to reach a robustness R2 of 0.85, an m value close to 1, and sensitivity close to
zero. It is therefore clear that the linear bias correction proposed by Song [40] improves the
performance criteria for clay prediction from vis-NIR spectra. Curiously, the prediction
results were almost the same for the LUCAS database (Figure 5) and the ICRAF database
(Figure 4). Similarly, the prediction results for LUCAS in the corrected testing reached the
same levels of R2 robustness of 0.85, m of 0.99, and sensitivity, a, of 0.62% (Figure 5e).

Generally, the bias correction step significantly improved the model accuracy for the
slope, as shown in Figures 4 and 5, and furthermore, this step (bias correction) was carried
out for the three soil textural fractions in both datasets (ICRAF and LUCAS), as shown in
Table 2. For both datasets, the clay content prediction result was the highest between the
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soil textural fractions for LUCAS and ICRAF (R2 = 0.85 for both datasets), followed by the
silt (R2 = 0.81 and 0.76 for ICRAF and LUCAS, respectively), and sand (R2 = 0.78 for both
datasets) (Supplementary Figures S1–S4).
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Cozzolino and Moron [51] achieved a good R2 (0.67, 0.80, and 0.90 respectively) for
sand, silt, and clay content from vis-NIR spectra using principal components regression
(PCR) models (n = 332 soil samples). Chang et al. [52] obtained an R2 of 0.67 for clay
content prediction, beside other soil properties based on PCR using the first derivatives
pre-processing (n = 743 soil samples). Ahmadi et al. [53] concluded the arithmetic mean
of R2 for sand, silt, and clay content prediction (0.76, 0.68, and 0.70, respectively) using
vis-NIR data from several studies. These studies used different prediction algorithms, soils,
and methodologies that can explain the variation of the prediction results obtained from
several studies.
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The conventional methods used in the laboratory (e.g., pipette and hydrometer meth-
ods) for determining soil texture are laborious, costly, and not suitable for large numbers
of soil samples. Moreover, the texture hand test method is very subjective and often
gives unreliable results. Therefore, spectral soil analysis can be a valuable alternative to
the traditional wet chemistry soil analyses once robust predictive models are built. This
spectral method is attractive because: (a) the intercepts (sensitivities) do not exceed the
value of 0.62% (Table 2); (b) the slope m (accuracy) is 0.99–1; (c) the R2 (robustness) of the
prediction models is 0.76–0.85 on the testing dataset (Table 2); (d) the range of the two
datasets cover a wide variety of soils from several countries; (e) the reproducibility of the
spectral calibration performance criteria was satisfactory for both independent databases
of ICRAF and LUCAS; and (f) the suitability to precision agriculture, which generates a
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large number of soil tests. With these high prediction performances, we can expect the
spectral method to be a candidate replacement for conventional methods of soil texture
diagnosis. If a sufficient number of samples is available on a regional scale, the predic-
tion performance could be further refined, since the training is done only on soils in the
region where the analysis results will be used. A laser diffraction granulometry method
is proposed as another alternative [54] to the standard techniques (hydrometer, Robinson
pipette); however, it remains to be seen if it is competitive in terms of processing time and
quality of the results [55].

3.3. Prediction of Textural Groups

Textural soil group information is very valuable for planning agricultural management
practices [10]. Figure 6 shows the predicted textural groups for the LUCAS testing dataset
using LightGBM. The overall accuracy (Equation (3)) of predicting the textural groups
for the LUCAS testing dataset was 75% when considering only the spectra, 58% when
considering only the seven available chemical measurements (NTotal, Pavailable, Kexchangeable,
Caexchangeable, Mgexchangeable, CaCO3, pHwater, OC), and 84% when combining the spectral
and chemical predictors. The overall accuracy of the textural group prediction for the
LUCAS training dataset was 100% regardless of whether one considers only spectra as
predictors, or chemical measurements or combined measurements (chemical and spec-
tral). This 100% accuracy shows that the training used to estimate the G1, G2, and G3
textural groups resulted in a perfect prediction with a 0% prediction error. However, this
same “perfect” training model resulted in a 16–38% decrease in accuracy when applied
to independent testing data. This shows that the LightGBM model tends to overtrain,
causing a drop in prediction performance. Despite this decrease, the probability of correctly
classifying the textural group from spectral analysis and routine chemical testing of the soil
is still quite high, at almost 84%. Moreover, a normalized confusion matrix (observation
ratios in percentage terms) was used to visualize the performance of the LightGBM model
by textural groups G1, G2, and G3, as defined in Figure 3. Their accuracy was 100% for
training and 80.8, 80.6, and 89.4% for G1, G2, and G3 respectively. The overall accuracy of
predicting the textural groups for the ICRAF testing dataset was 75% when considering
only the spectra, 62% when considering only the five available chemical measurements
(Kexchangeable, Caexchangeable, Mgexchangeable, pHwater, OC), and 83% when combining the
spectral and chemical predictors. Figure 7 present the results of testing data from ICRAF
dataset with a total or overall prediction accuracy of 100% for training and 83% for testing.
Distributed over the three textural groups, this prediction accuracy for testing was 88.12%,
56.52%, and 80.26%, respectively for groups G1, G2, and G3 and 100% for training.

The accuracy of both models shows a good ability to classify soil textural groups.
As expected, most of the misclassified data points were located on the borders between
neighboring textural groups. Even the conventional methods (e.g., pipette and hydrometer
methods) can generate such measurement errors when it comes to neighboring of textural
groups [56]. Beretta et al. [57] confirmed that even conventional wet methods can show
differences between them in textural class assignments. Therefore, this misclassification
between different neighboring soil classes determined by the conventional methods may
explain the misclassified data points generated by the LightGBM model. For a tolerance of
about 10% on the sand and clay fractions, we can visualize a border effect of 20 ± 2% when
considering the horizontal boundary of 20% clay between G1 and G3, of 30 ± 3% when
considering the horizontal boundary of 30% clay between G1 and G2, and of 45 ± 4.5%
to 55 ± 5.5% when considering the vertical boundaries of 45–55% sand between G2 and
G3 (Figures 6 and 7). The remaining points that are misclassified, and are far from these
border effects, are attributed to true prediction errors by LightGBM. At first glance,
misclassified points due to border effects are more frequent than those due to prediction
errors (Figures 6 and 7).
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As shown in Figures 6 and 7, the total prediction accuracy for soil textural groups
was similar for ICRAF and LUCAS, respectively at 83% and 84% for testing and 100% for
training. These high classification accuracies were achieved when spectral information
and auxiliary chemical variables are combined in the prediction model. Previous studies
showed that the inclusion of auxiliary predictor variables improves the prediction accuracy
of a model [8,18,58–60]. Moreover, Cozzolino and Moron [51] obtained a high positive
correlation between Ca and clay content (0.80), Cu and Mg (0.71), K and clay (0.60), and Mg
and clay (0.51), which may consequently affect the soil texture prediction. They concluded
that these high correlations between physical properties and chemical parameters could
explain some of the high accuracy obtained. Our results suggest that the LightGBM model
can be successfully used to predict the soil textural groups.
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4. Conclusions

In this paper, the machine learning algorithms MLP, CatBoost, and LightGBM were
used to predict soil textural fractions (clay, silt, and sand) and groups (G1: Fine, G2:
Medium, and G3: Coarse) for two large-scale vis-NIR soil spectral libraries (ICRAF and
LUCAS). The models’ performance on the testing datasets reached R2 values up to 0.85.
The results showed a good performance for the LUCAS testing dataset with R2 values of
0.78 (sand), 0.81 (silt). and 0.85 (clay). For the ICRAF testing dataset, the R2 values for sand,
silt, and clay were 0.78, 0.76, and 0.85, respectively. This predictive capacity of soil texture
properties using soil spectral information is a very promising alternative to the traditional
soil laboratory analysis due to its sensitivity, accuracy, reliability, versatility, reproducibility,
and adaptability to precision agriculture.

Furthermore, the soil textural groups (G1, G2, and G3) were classified with LightGBM
using spectra and chemical auxiliary variables with a high overall accuracy of 100% for
training and close to 84% for testing. These findings support the hypothesis that chemical
tests are powerful auxiliary variables for improving the prediction of these three textural
groups. The algorithms CatBoost, MLP, and LightGBM are promising for soil texture
prediction, and they can be used when a soil spectral library is available with enough
samples. Moreover, in light of these good prediction accuracies produced for soil texture
prediction with the ICRAF and LUCAS spectral libraries and the CatBoost, MLP, and
LightGBM algorithms, we can consider further refining this method by using regional soil
sample databases with spectral data obtained using in situ spectral methods.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agronomy11081550/s1, Table S1: Five machine and deep learning algorithms used for sand,
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silt, and clay prediction on LUCAS dataset before bias correction, Table S2: Five machine and deep
learning algorithms used for sand, silt, and clay prediction on ICRAF dataset before bias correction,
Figure S1: Prediction accuracy of Sand content from ICRAF dataset, Figure S2: Prediction accuracy of
Silt content from ICRAF dataset, Figure S3: Prediction accuracy of Sand content from LUCAS dataset,
Figure S4: Prediction accuracy of Silt content from ESDAC dataset.
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