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A B S T R A C T   

Improvements in the sustainability of agricultural production depend essentially on advances in the efficient use 
of nitrogen. Precision farming promises solutions in this respect. Variable rate technologies allow the right 
quantities of fertilizer to be applied at the right place. This helps to both maintain yields and avoid nitrogen 
losses. However, these technologies are still not widely adopted, especially in small-scale farming systems. 
Recent developments in sensing technologies, like drones or satellites, open up new opportunities for variable 
rate technologies. In this paper, we develop a bio-economic modelling framework to assess the usefulness of 
different sensing approaches in variable rate fertilization to measure environmental heterogeneity at field level, 
ranging from satellite imagery to drones and handheld N-sensors. We assess the utility of these sensing tech-
nologies and quantify the effects on yields, nitrogen input and associated net returns using wheat production in 
Switzerland as our case study. Our results show that net profits increase when a high-resolution technology is 
applied to fields which exhibit higher spatial heterogeneity of soil conditions and lower spatial autocorrelation of 
different soil types. However, even with a high degree of spatial heterogeneity within a field, both the overall 
utility of variable rate fertilization and the absolute differences in the net returns between the technologies 
remain low. Our results suggest that the additional cost of using a drone that provides the highest resolution 
should not exceed 4.5 CHF/ha compared to the use of a standard N-sensor or satellite imagery. Thus, the 
adoption of variable rate technologies depends essentially on the additional economic and environmental effects 
they generate. Therefore, it might be necessary to implement specific policy measures, such as taxes on nitrogen 
in combination with subsidies. Moreover, specific technology providers, such as contractors, may play a vital role 
in technology uptake since the economic benefits might only play out at larger spatial levels.   

1. Introduction 

Some of todays’ most important issues for agricultural policy in the 
developed world involve the impacts of high nitrogen use on the envi-
ronment and the associated pollution of aquatic and terrestrial ecosys-
tems (Robertson and Vitousek, 2009; Sutton et al., 2011; van Grinsven 
et al., 2015). The efficiency of nitrogen use must be improved if agri-
culture is to overcome systematic challenges, such as environmental 
degradation, agriculture’s contribution to climate change, the provision 
and security of food supplies and the wellbeing of farmers (Gebbers and 
Adamchuk, 2010; Tilman et al., 2011; Zhang et al., 2015). Variable rate 
technologies (VRT) can help to avoid nitrogen losses by applying the 
right amount of fertilizer at the right time and place to meet the needs of 
the crops (Diacono et al., 2013). This helps reduce nitrogen applications 
without loss of yield (Argento et al., 2020; Basso et al., 2019; Stama-
tiadis et al., 2018; Wang et al., 2019) and contributes to a more sus-
tainable agricultural production system (Basso and Antle, 2020). 

However, while the adoption rate of these technologies is still low in the 
small-scale farming systems characteristic for Europe (Barnes et al., 
2019), current technological developments open up optimistic prospects 
for the future of precision farming (e.g., Walter et al., 2017). Thus, the 
economic and ecological benefits of VRT in small-scale farming systems 
must be understood more clearly as it can play a major role in reducing 
nitrogen impact on the environment. 

In this paper, we aim to contribute to a better understanding of the 
economic benefits of variable rate fertilization. More specifically, we 
develop a bio-economic modelling framework to investigate benefits of 
more accurate spatial information which can be acquired by different 
sensing approaches, ranging from handheld devices, tractor mounted 
sensors, drones to satellite imagery. We conceptually examine the 
applicability of different types of VRT in small-scale farming systems 
and test the relevance of characteristics of the field, e.g., heterogeneity 
of soil conditions and spatial clustering of soil types, for the economic 
viability of VRT. This enables us to assess optimal nitrogen use and the 
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economic and environmental implications of various sensing 
approaches. 

Recent research shows that the adoption of variable rate technolo-
gies is very heterogeneous, with widespread adoption in large-scale 
farming systems, as in the USA, but low uptake in small-scale farming 
systems, as in Europe (Barnes et al., 2019; Schimmelpfennig, 2016; 
Tamirat et al., 2018). The lack of profitability, especially with small 
fields and small farms, is a crucial adoption hurdle (Biermacher et al., 
2009). Flat pay-off functions and low input prices are key factors for the 
low economic benefit of variable nitrogen application (Pannell, 2006; 
Pannell et al., 2019). In addition, areas with a higher spatial heteroge-
neity of yields are assumed to have a greater potential for benefits from 
site-specific management (Meyer-Aurich et al., 2010; Pannell et al., 
2019), although this does not necessarily lead to higher economic 
benefits (Bachmaier and Gandorfer, 2012; Lawes and Robertson, 2011). 
The potential benefits depend strongly on the extent to which this 
variability can be measured (Basso et al., 2011), whereby data collection 
is the most important step in this process, i.e., the sensing approach for 
the application of the VRT (Basso et al., 2016; Basso et al., 2011; Bier-
macher et al., 2009; Koch et al., 2004; Meyer-Aurich et al., 2010). 

In the existing literature, there are very few studies dealing with the 
profitability of VRT in small-scale farming systems and new sensing 
technologies. Studies carried out for Europe are either based on man-
agement zones and the associated optimal N fertilization rate (Basso 
et al., 2016; Basso et al., 2011; Koch et al., 2004; Meyer-Aurich et al., 
2010), or focus on a specific type of sensing approach used in VRT 
(Biermacher et al., 2009; Godwin et al., 2003). Moreover, recent tech-
nological developments in sensing (e.g., via satellites, drones etc.,), 
guidance and application are expected to be game-changers by 
increasing the range of cost-efficient variable rate technologies, also in 
small-scale farming systems (e.g., Finger et al., 2019; Walter et al., 
2017). The initial investment cost for these sensing technologies, as well 
as the costs of utilizing this information, depends largely on the type of 
technology. For example, satellite imagery might be freely available but 
require further processing costs, while the purchase of a nitrogen sensor 
or a drone may involve an investment of several tens of thousands of 
francs. Here we focus on the hitherto undocumented economic benefits 
of these technologies for farmers in the context of variable rate fertil-
ization. This means it is not clear which market and environmental 
conditions make which type of sensing technology profitable for farmers 
and how polices can help overcome adoption hurdles and thus improve 
agriculure’s environmental footprint. 

We aim to fill these gaps by examining which sensing technology 
provides information that is precise enough to be useful for farmers in 
connection with VRT applications. We focus on the applicability of these 
technologies in small-scale farming systems, using Swiss wheat pro-
duction as our example. To this end, we develop a conceptual model that 
allows us to assess the benefits of different sensing approaches and 
parametrize a bio-economic simulation model to derive optimal nitro-
gen use and the economic benefits of these technologies. In our simu-
lations, we consider market and policy conditions as well as three 
components of field level environmental heterogeneity: i) the difference 
between soil conditions and thus optimal N use; ii) the heterogeneity of 
different soil types across the field measured by the Shannon Index; and 
iii) the spatial clustering of soils within the field, i.e., the spatial auto-
correlation, measured by the Moran’s I value. Assuming that site- 
specific management is potentially more beneficial on areas with 
higher spatial heterogeneity, (Meyer-Aurich et al., 2010; Pannell et al., 
2019), we hypothesize that for fields with high heterogeneity in soil 
types (i.e., a high Shannon Index) and low spatial autocorrelation (i.e., a 
low Moran’s I value) both profits and the environment benefit from a 
technology with greater spatial resolution. 

Our results show that technologies with high spatial resolution are 
more useful under conditions of high environmental heterogeneity. 
However, in our case study, the overall economic benefits of VRT remain 
low, while the technology still leads to high costs in small-scale farming 

systems. Thus, the investment in VRT may not be profitbale for small 
farms and indeed the additional benefits of higher resolution sensing 
approaches, such as drones, might fail to offset the costs involved when 
applied to small-scale farming systems. For example, we find that the use 
a drone that provides the highest resolution of 2x2m should not cost 
over 4.5 CHF (approx. 4.25 €) per hectare more than a 10x10m satellite 
image. Thus, while VRT in general and, more specifcally, the use of 
higher resolution sensing approaches provide environmental benefits, 
farmers are unlikely to adopt them. Better polices are essential to open 
the way for the environmental and economic opportunities arising from 
precision farming. For example, adoption rates could be increased by 
providing financial incentives to farmers in the form of subsidies and/or 
nitrogen taxes for generating environmental benefits by using (better) 
variable rate technologies and technology providers, such as contrac-
tors, could play a vital role in technology adoption in small-scale 
farming systems. 

The remainder of the paper is structured as follows. Firstly, we 
present an overview of different sensing technologies that can be used to 
collect information for the application of VRT. Next, we develop a 
simulation framework for the adoption of these technologies. We then 
provide numerical results for the profitability of variable rate nitrogen 
application in Swiss wheat production focusing on i) the impact of 
environmental heterogeneity on technology choice; ii) nitrogen use and 
yields with technologies using different spatial resolutions; and iii) 
changes in nitrogen use with a tax on fertilizer. Finally, we discuss our 
results with respect to the existing literature and draw policy 
conclusions. 

2. Background: Types of Variable Rate Technologies 

VRT does not merely describe one specific technology, but rather a 
range of technologies. The practical implementation of VRT is a cyclical 
process with the following steps: a) data collection, b) interpretation of 
the data collected, c) implementation of an appropriate management 
response, and d) monitoring of results in a continuous learning process 
of change (Patil and Shanwad, 2009). Data collection depends strongly 
on the resolution and therefore the accuracy of the data provided by the 
sensing technology (Table 1). Data can be collected in various ways, i.e., 
soil sampling, satellite data, drone images, yield mapping or handheld 
devices. Soil sampling can be carried out either as raster sampling or on 
the basis of partial areas created, for example, using yield maps. Grid 
sampling only provides sufficient information on nutrient distribution 
for small grids of 0.25–0.5 ha (Lorenz and Münchoff, 2018). 

Two basic site-specific management methods are used for the 
application of nitrogen: map-based and sensor-based approaches (Ess 
et al., 2001). The map-based approach focuses on the establishment of 
management zones. This includes collection of geo-referenced data on 
yield, soil properties or crop biomass indices. The data is analysed to 
generate a site-specific map of properties which can be used for variable 
rate applications (Mooney et al., 2009). Spatial data on soil and plant 
properties can be obtained from aerial or satellite images or soil samples. 
A global position system (GPS), or improved accuracy approaches like 
differential global position system (DGPS) are used to determine the 
current location in the field during sampling and application. 

The sensor-based approach uses real-time sensors mounted on the 
tractor and feedback control to measure soil properties or crop charac-
teristics and this information is available immediately for variable rate 
application (Ess et al., 2001). Thus, data can be analysed in real-time 
without the use of GPS or geographical information systems (GIS) in 
the field (Mooney et al., 2009). However, sensor-based technologies can 
also be combined with GPS and GIS to keep input records and compare 
annual variations in input use. There are three different methods of 
sensor-based nitrogen application: online, offline and an online pro-
cedure with map overlay (Drücker, 2016). The online method is stan-
dard for sensor-based nitrogen fertilization. The spectral indices 
measured by sensors are converted into nitrogen target values and 
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passed directly to the application technology. GPS is not required for this 
method, but can be used for geo-referenced documentation of the site- 
specific nitrogen amounts applied. In the offline procedure, data 
acquisition and application are separated in time and therefore require 
the use of satellite navigation. The sensor-based data acquisition takes 
place prior to fertilizer application and the spread rate map based on this 
data is then processed on the tractor with the appropriate software and 

application technology. This method is particularly suitable for crops 
where plant development is not show sufficiently advanced to be 
detected by the sensors at the time of application. Despite differences 
between these two approaches, their utility depends heavily on the ac-
curacy of the measurement of the environmental heterogeneity in the 
data collection step. In the following analysis, we provide an economic 
framework and a simulation exercise to assess the economic benefits of 
this data collection step in VRT applications. 

3. Economic Framework 

Many factors affect the adoption of VRT in small-scale agricultural 
systems. We focus on two factors that are expected to have economic 
implications for using VRT: i) variation in costs for information sampling 
and application of VRT and ii) changes in costs for fertilizing (Bullock 
et al., 2002), whereby we assume that the net field-level profits π of 
variable rate fertilizer application (both measured per acreage unit) can 
be described as follows: 

π =
∑K

i=1
P*Yi(N) − qNNi (Info) − qXXi(Info) − CO − CInfo (1) 

The first term describes the profit from selling wheat on the markets, 
where P represents the output price and Yi(N) denotes the site-specific 
production function describing crop yield Yi as a function of nitrogen 
fertilizer N. The second term includes the cost of nitrogen use depending 
on the variable rate technology (and thus the information sampling). 
The third term covers the other input costs, such as fuel, plant protec-
tion, growth regulators and so on. The fourth and fifth terms show quasi- 
fixed costs for applying fertilizer (CO), which are not depending on the 
sensing technologies and information technology (CInfo). 

We focus on a single field with heterogeneous soil conditions. To 
reflect this heterogeneity as well as the varying resolution of different 
technologies, a field of fixed size (1 ha) is divided into i = 1, ….K parcels. 
The higher the resolution of the chosen technology, the higher the 
heterogeneity detected in the field. QN reflects the price for fertilizer and 
Ni the amount of nitrogen applied. Xi reflects the amounts of other inputs 
(e.g., plant protection, growth regulator etc.,) and qX is the vector of 
other input prices. CO represents the operating costs, e.g., reflecting the 
quasi-fixed costs of applying fertilizer. CInfo are the information costs 
which comprise variable costs incurred for the collection of essential 
site-specific information on nutrient requirements. 

We identify five different approaches to collect the required infor-
mation (Info), based on the different types of technology described in 
Table 1:i) soil sampling, ii) sensing based on a tractor-mounted crop 
sensor that provides real-time measurements, iii) handheld devices, iv) 
sensing from satellites and v) sensing using drones. All the information 
must be processed in a management information system (reflected in 
investment and quasi-fixed costs). These different sensing approaches do 
not exclude each other. In fact, combinations are commonly used, e.g., 
to combine real-time information from the tractor-mounted crop sensor 
with records from soil samples and field-history data to continually 
adjust nitrogen rates in the field. Thus, moving from i) to v) increases 
Info and implies a higher state of information on plant nutrient needs. 

We use a profit maximization model for our analysis with focus on 
the effect of (more spatial) information on N application. Therefore, 
(quasi-)fixed costs do not appear in the first order conditions (2). The 
optimal nitrogen level on the parcel is determined by maximizing the 
profit function with the following first-order condition based on 

Table 1 
Types of data collection for the application in VRT.  

Data 
collection 
method 

Spatial resolution 
and accuracy 

Remarks References 

Drones From a few cm per 
pixel up to 2*2 m 
(±/- 0.01–0.02 m) 

Offers high level 
of flexibility and 
spatial resolution. 
Images are 
available on 
demand. Less 
dependent on 
weather 
conditions than 
satellite, but still 
affected by wind 
and rain. 
Expensive and 
requires specific 
knowledge for 
use. Country 
specific legal 
regulations may 
complicate the use 
of drones. 

Candiago et al. 
(2015); Gonzalez 
et al. (2018); Maes 
and Steppe (2019);  
Perera et al. (2019);  
Reger et al., 2018 

On the go 
N-sensors 
(tractor 
mounted) 

125 measuring 
points per ha (+/- 
0.1–0.3 m) 

Provides 
immediate 
information about 
crop status and 
allows direct 
application 
without maps. 
Purchase of 
equipment is 
expensive. 

Drücker (2016) 

Satellite 
imagery 

<5 m 
(microsatellites) 
20*20 m/10*10 m 
(e.g., Sentinel 2) 
30*30 m (e.g., 
EnMAP) (±/-11 m) 

Satellite images 
can be obtained 
cheaply or even 
free of charge. 
Only periodic 
coverage and 
strong 
dependence on 
weather 
conditions (e.g., 
clouds). 

Comba et al. (2018);  
Gonzalez et al. 
(2018); Wolters et al., 
2019 

Yield 
mapping 

20*20 m 
(+/− 0.02–0.2 m) 

Information 
automatically 
collected from 
newer combine 
harvesters, but 
only information 
about previous 
crops available. 

Schimmelpfennig and 
Ebel (2016) 

Soil 
sampling 

Basically free, but 
mostly between 
0.125 and 1 ha 

Might be 
expensive and 
labour intensive, 
but must be 
carried out every 
10 years anyway 
(ÖLN guidelines) 

Ess et al. (2001);  
Lorenz and Münchoff 
(2018) 

Handheld 
N-sensor 

Free Not much 
equipment needed 
and relatively 
easy to use. 
Labour intensive 
to get high spatial 
resolution. 

Muñoz-Huerta et al., 
2013  
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expected profits E(π)1: 

∂E(π)/∂N = p∂f (N)/∂N − qN − q∂X/∂N = 0 (2) 

In line with Bullock and Bullock (2000) and Bullock et al. (2009), we 
assume a hypothetical quadratic field with three different soil types (see 
Fig. 1). The soil properties are assumed to be heterogeneous over the 
whole field, which also implies heterogeneous nutrient requirements 
within the field. Different technologies can be used to reveal the un-
derlying objective soil heterogeneity, i.e., the observed nutrient re-
quirements also depend on the technology selected. In our analysis, the 
surface of the field is divided into square areas of equal size. The size, 
and thus number of these parcels within the field, is determined by the 
spatial resolution of the respective technology (cf., Table 1). In all cases, 
we assume homogeneous conditions within each parcel (see Fig. 2 for an 
illustration). 

Thus, the profit maximizing level of nitrogen use in each parcel de-
pends on the technology used. The total amount of nitrogen Ninfo used is 
the sum of all optimum nitrogen Ni

opt values over all parcels i: 

Ninfo =
∑K

i=1
Nopt

i (3) 

Accordingly, total yields can be summarized as follows: 

Y
(
Ninfo

)
=

∑K

i=1
Yi
(
Nopt

i
)

(4) 

Finally, total net returns for the field are: 

Net return πinfo =
∑K

i=1
p*Yi

(
Nopt

i
)
− q*Nopt

i (5) 

Our framework shows that the heterogeneity of production condi-
tions determines the utility of variable rate application of nitrogen. Net 
revenues are expected to increase due to the spatial optimization of 
nitrogen use achieved through variable rate application (Eq. (3)). 
Increasing heterogeneity of field conditions is expected to enhance, 
ceteris paribus, the benefits of variable rate application of nitrogen due 
to higher N efficiency. Moreover, the advantages of the spatial optimi-
zation of nitrogen use achieved with variable rate technologies become 
increasingly apparent in relation to expenditure for nitrogen. On the 
other hand, the use of (different) variable rate technologies may lead to 
an increase/decrease in overall nitrogen use and yield levels (e.g., Finger 
et al., 2019). 

4. Simulation Framework 

The empirical implementation is based on information regarding the 
underlying production functions of the different soils and the distribu-
tion of soils across the parcels. The heterogeneity of production condi-
tions in our simulations is split into three components: 1) Heterogeneity 
of soil types represented by different production functions (Fig. 2); 2) 
Heterogeneity of soil types within the field represented by the Shannon 
Index; 3) The spatial clustering of soils within the field, i.e., the spatial 
autocorrelation, represented by Moran’s I value. 

4.1. Specification of the Production Function 

A major challenge when analyzing the utility of different VRTs in-
volves the uncertainty regarding a crop’s response to the use of nitrogen 
fertilizers, i.e., the production function, which is determined primarily 

by complex spatio-temporal interactions between soil properties, pre-
vailing weather conditions and variety choices (Morris et al., 2018; Sela 
et al., 2016; Tremblay et al., 2012). Therefore, the development of a 
yield response function that represents a crop’s response to N-rate 
management and the definition of the location-specific optimum nitro-
gen rate (Basso et al., 2011) are key factors when simulating the benefits 
of site-specific management. In our study we use a square root function 
to specify the production function, (e.g., Finger and Hediger, 2008): 

Yi = αn + βnN1/2
m + γnNm (6)  

where Yi is the yield on parcel i, the Nn applied amount of nitrogen on 
the parcel and αn, βn and γn are the coefficients of the regression analysis. 

4.2. Production Function and Optimal Nitrogen Values for Different Soil 
Types 

We estimate production functions for three different soil types S1, S2 
and S3. Soil types S1 and S3 are defined according to Torriani et al. 
(2007), Schmid and Finger (2008) and have the same composition: 26% 
sand, 38% clay and 36% silt. The soil depth in both cases is 1.5 m, but 
the two soil types differ in their organic matter content. The organic 
matter content of soil type S1 is constant at 2.6% while in soil type S3 it 
is 2.6% in the upper 5 cm and 2.0% in the lower soil layers. This means 
that soil type S1 has a higher organic matter content and is therefore 
more fertile. These soil conditions reflect observations on the Swiss 
Plateau, the most important arable production region in Switzerland 
(Torriani et al., 2007). Soil type S2 is a mixture of the other two types 
and therefore has average fertility. Yield response functions in our 
analysis are based on a crop simulation model used to simulate N- 
fertilization experiments for wheat production on the Swiss Plateau (see 
Schmid and Finger, 2008 for the data). Estimation steps and diagnostics 
are documented in the Appendix and all codes and data are freely 
available. The resulting yield response functions for the three soil types 
are as follows2: 

YS1 = 5233+ 38.1*N1/2
opt1 − 0.34*Nopt1 (7)  

YS2 = 4964+ 75.1*N1/2
opt2 − 1.57*Nopt2 (8)  

YS3 = 4689+ 114*N1/2
opt3 − 2.85*Nopt3 (9) 

Optimal nitrogen values for each soil type (Fig. 1) are obtained by 
maximizing the corresponding profit function for every yield response 
function. In the simulation, we assign each of these yield response 
functions to one soil type (Fig. 2). 

4.3. Simulation Set-up 

Based on the spatial resolution values for the different technologies 
(Table 1), we construct four different resolutions for information on the 
soil structure in a generic field of 1 ha (Fig. 3). Firstly, we create a field 
with a spatial resolution of 2 by 2 m for a 1 ha (10,000 m2) area, 
resulting in 2500 parcels (K). This represents information that can be 
collected using a drone. We assume that it reveals the actual soil 
structure of the field and therefore serves as a reference for all further 
calculations. Secondly, we consider sensing technologies that have a 
resolution of about 10 by 10 m, such as N-sensors or satellite imagery. 
We replace 25 parcels of the reference field (a square of 5 by 5 m) by one 
parcel representing the most frequent soil type. This results in a field 
with 100 parcels. Thirdly, we further aggregate the parcels to a resolu-
tion of 20 by 20 m, representing sensing technologies such as satellite 1 The variability of profits (e.g., due to volatile yields and prices) and the 

variability of yield-nitrogen relationships, e.g., due to climate risks also affects 
optimal fertilizer use of non-risk-neutral decision makers (see e.g., Finger, 
2012). We focus on profit maximization for clarity of the analysis, but provide a 
straightforward modelling approach that can be applied easily to extension. 

2 Detailed coefficient estimates for the production functions are given in the 
Appendix. 
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imagery or yield maps. In a last step, we only consider information with 
low spatial resolution, such as soil samples or the use of a handheld 
device, which results in four parcels per field. 

These four levels of spatial resolution are then used in two simulation 
steps. Firstly, we vary the proportions of the different soil types between 
0 and 100% and randomly assign a soil type to one of the 2500 parcels, i. 
e., the reference field. The more even the proportions, the higher the 
Shannon Index in the reference field. In a second step, we allow for 
clusters in the random assignment of soil types. This leads to clusters 
with the same soil type and production function in the field and 

increases the Moran’s I value accordingly. 
The simulation process is repeated 10′000 times for every simulation 

step. We calculate the utility of each sensing technology for all of the 
10′000 realizations using different values of the Shannon Index and 
Moran’s I. Calculations for yield, nitrogen and net returns were per-
formed as described in Eqs. (5), (6) and (7). The prices for nitrogen and 
wheat used for the basic scenario were aligned to Swiss conditions 
(Schoch and Cassez, 2019). More specifically, the price of wheat is 0.52 
CHF/kg and the price of nitrogen is 1.2 CHF/kg, which reflects the retail 
price in Switzerland in 2019. 

Fig. 1. Yield response functions derived from simulated data and corresponding profit maximizing nitrogen values. Note that a uniform application of nitrogen 
would lead to different yields depending on the underlying soil type. This illustrates the efficiency gains from using VRT in a field with various soil types. 

Fig. 2. Yield response functions and optimum nitrogen values (Nopt) for three different soil types in a field with three parcels i.  
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4.4. Robustness Checks 

In addition, we provide various robustness checks. We re-run the 
analyses described above i) using different output prices, ii) increasing 
the number of soil types and iii) using a different form of the yield 
response function, i.e., a quadratic instead of square root function. 
Furthermore, we also investigate the outcomes under higher nitrogen 

prices as a policy-relevant sensitivity analysis. This reflects the possible 
effects of a nitrogen tax (e.g., Nam et al., 2007; Finger, 2012). To this 
end, we assume the nitrogen price increases by 50% and 100% (i.e., 
from 1.2 CHF/kg to 1.8 and 2.4 CHF/kg, respectively). 

All codes and data used in this analysis are freely available with this 
paper (now attached for review). 

Fig. 3. Aggregation of soil information reflecting different sensing technologies in the simulation framework.  

Fig. 4. Prediction of which spatial characteristics of a field and which information technology are likely to generate the highest net returns.  
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5. Results 

5.1. Optimal Technology Use Under Environmental Heterogeneity 

The combined results from increasing environmental heterogeneity 
(Shannon Index and Morans’ I) in our simulation are presented in Fig. 4 
which advances a prediction regarding the degree of spatial heteroge-
neity and the type of technology that are likely to generate the highest 
net returns. 

The use of a low-resolution technology suffices in cases of low het-
erogeneity and little spatial autocorrelation, i.e., the use of a high- 
resolution technology does not provide any additional economic 
benefit in our simulations. A technology with medium resolution in-
creases net returns if heterogeneity is low and the spatial autocorrelation 
increases, i.e., the different soil types tend to occur in patches. The use of 
a high-resolution technology results in higher net returns when both 
heterogeneity and spatial dispersion increase. 

These results can be disaggregated into the effect of heterogeneity 
(Shannon Index) and spatial clustering (Moran’s I). With respect to the 
Shannon Index, the simulations show that net returns for high-resolution 
technologies increase with soil heterogeneity at field level (Fig. 5). This 
implies that when the Shannon Index values are high, information at 
lower spatial resolutions can be more useful. Increasing heterogeneity of 
soil conditions leads to a rise in the difference between the technology 
with the highest resolution and the other technologies. Thus, high- 
resolution technologies, such as drones, only generate higher net reve-
nues if some critical level of soil heterogeneity is exceeded. Assuming 
the highest heterogeneity in soil conditions, net returns increase by 
around 6.5 CHF when using a 2x2m resolution technology rather than a 
technology with 50x50m resolution. This corresponds to roughly 0.2% 
of the expected net returns in Swiss wheat production. 

Fig. 6 shows the variability in yield, amount of nitrogen applied and 
net returns from the variation in Moran’s I for the four types of tech-
nologies, given a high Shannon Index. Thus, the results can be inter-
preted as an upper limit for the benefits of VRT from soil environmental 
heterogeneity within a field. 

The results indicate that the use of a high-resolution technology only 
leads to a small average increase in yield and reduction in nitrogen 
input. The standard deviation of nitrogen use increases by 10 kg/ha 

when using lower resolution technologies which corresponds to 11% of 
nitrogen input with high-resolution technologies. Consequently, the 
difference in net returns is also rather small and comparable to the in-
crease in the Shannon Index. However, high-resolution sensing tech-
nology clearly reduces variability in yields, nitrogen use and thus overall 
net returns. 

5.2. Nitrogen Input and Yield With Information on Different Spatial 
Resolutions 

The extent of these changes in net returns also depends on input and 
yield levels (Fig. 7). A comparison of nitrogen input and yields for the 
different sensing technologies shows that in cases with low to medium 
input applications, the use of a technology with a high spatial resolution 
leads to higher yields. When input use is high, i.e., in the section where 
the production functions are flat, lower resolution technologies result in 
the same yield levels as the high-resolution technology. This reflects our 
assumption that production functions converge with higher nitrogen 
input. The use of a technology with high spatial resolution only leads to 
a more efficient use of nitrogen if there is a heterogeneous reaction 
between the production function and the amount of nitrogen applied. 

5.3. Nitrogen Input With Taxes 

Fig. 8 illustrates the differences in net returns between the technol-
ogies with the highest spatial resolution and those with the lowest res-
olution for two different levels of input prices. Net gains increase with 
higher heterogeneity. However, differences in net returns between high- 
and low-resolution technologies remain relatively small in all cases. 
Given the current nitrogen price of 1.2 CHF/kg, the average difference is 
no more than 5 CHF /ha even with high heterogeneity. If the nitrogen 
price is doubled, e.g., due to a nitrogen taxation (2.4 CHF/kg), the dif-
ference increases only slightly, and is still low (approx. 8 CHF/ha), even 
with high heterogeneity. In addition, a further increase in the nitrogen 
price does not lead to a bigger difference in net returns between the 
technologies, because the amount of nitrogen applied declines. Thus, 
higher nitrogen prices generate little additional incentive to use a high- 
resolution technology. 

Fig. 5. Average net return values with 95% confidence interval for the four different categories of technologies depending on the soil heterogeneity represented by 
the Shannon Index. 
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6. Discussion 

Our results show that field-level soil heterogeneity plays an impor-
tant role in the utility of different types of sensing approaches when 
using variable rate fertilization. The difference between the net utility of 
a high-resolution technology and those offering medium or low spatial 
resolution rises with higher spatial heterogeneity, as indicated by an 
increasing Shannon Index and with low spatial autocorrelation of the 
different soil types. These results support our hypothesis that fields with 
high heterogeneity require a technology with high spatial resolution. 
Nevertheless, the differences between the individual technologies 
remain rather small, i.e., about 0.2% of total returns even with high 
environmental heterogeneity. To some extent these results reflect the 
observed “flatness of the payoff function” which in many crops has the 
effect of reducing the potential benefits of variable rate nitrogen appli-
cations in agricultural systems with a high nitrogen input (Pannell et al., 

2019; Pannell, 2006). If nitrogen management with farmyard fertilizer 
in the form of slurry, which is very common in Switzerland, is also taken 
into account, the benefits of variable nitrogen application could sink 
even further. 

When interpreting these results, it should be borne in mind that the 
use of VRT also leads to higher information costs, including expenditure 
for the hardware and software needed when using precision technolo-
gies. These are not considered in our analysis, but vary significantly 
depending on the source of information. For example, satellite images 
provide reliable high-resolution remote sensing data (Meier et al., 2020) 
but are still inexpensive or are even available free of charge. Our sim-
ulations suggest that this information can pay-off if there is a certain 
level of environmental heterogeneity within fields. The number of pixels 
required for site-specific cultivation depends on the heterogeneity of the 
field and the type of agricultural machinery used (Meier et al., 2020). 
Practical experience suggests that a minimum of 50 pure spectral 

Fig. 6. Yield, amount of nitrogen applied and net returns for the four different categories of technologies in the case of high heterogeneity of soil types (high Shannon 
Index) and variation in Moran’s I (N = 10′000). 

Fig. 7. Resulting combinations of nitrogen input and the yield obtained by using different sensing technologies. Each data point represents the result of a simulation 
run (N = 10′000) for one technology. 
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samples per field is required to develop site-specific management mea-
sures in a meaningful way (Meier et al., 2020). However, as fields in 
Switzerland are rather small and are often irregular in shape, a tech-
nology with high spatial resolution might be needed to reach this 
number. In this case, drone imagery may provide sufficient spatial 
resolution. 

This technology could well prove too expensive, given the high in-
vestment costs and the need for highly skilled labour. Our results suggest 
that a drone should not cost over 6.5 CHF/ha and year if it is to be more 
profitable than a low-resolution technology like soil sampling, or not 
more than 4.5 CHF/ha compared to the use of a 10x10m satellite image. 
However, the investment costs vary greatly for the different technolo-
gies. While satellite imagery is sometimes available free of charge or at a 
very low price, drones or nitrogen sensors can cost up to several thou-
sand francs to purchase. However, having to seek additional informa-
tion, e.g., to create prescription maps, may result in further direct or 
indirect costs. Moreover, the implementation of an appropriate man-
agement response, e.g., through N-sensors mounted on machinery, will 
also lead to additional fixed costs amounting to several thousand francs. 
These costs can result either from upgrading existing machines or pur-
chasing a new machine suitable for variable rate application. Utilized 
farm area and useful service life determine the costs per hectare and 
year. 

This implies that the utility of high-resolution technologies in VRT 
application should also be assessed in the context of investment costs. 
The costs per ha and year arising from investments in sensors, drones or 
similar new technologies will depend largely on i) farm size on which 
technology can be used, ii) service lifetime of the technology and iii) 
possibilities to use equipment for other purposes (e.g., using drones for 
other scouting activities). Given that technologies develop quickly 
(implying shorter anticipated service life), the results presented here 
suggest that information technologies are hardly viable as stand-alone 
investments for individual farms in small-scale farming systems as in 
Switzerland (average farm size is about 20 ha (Swiss Federal Statistical 
Office FSO, 2019)). However, technology investments across multiple- 
farms, machine pools or the engagement of contractors may be viable 
options for adoption of variable rate fertilization in these systems. 

In addition to the investment costs, there are other factors which may 
have a negative impact on VRT utility and which must be considered 
when evaluating VRT. For instance, when creating an application map, 
the capacity of the machine (e.g., the fertilizer spreader) must be taken 
into account (Welsh et al., 2003). Conventional fertilizer spreaders can 
only vary the application rate within certain limits. Thus, the informa-
tion contained in the drone imagery must be downscaled to the mini-
mum 7 × 7 m resolution of the application map for the common tractor 
terminal (Argento et al., 2020). Nevertheless, a drone-based approach 
provides additional benefits when compared to other sensing ap-
proaches. For example, it allows vegetation development to be studied 
in more detail, which can be useful for improving other crop manage-
ment processes and information can be gathered even on cloudy days 
(Argento et al., 2020). In addition, it is important to consider sources of 
error in variable rate applications (Dillon, 2003). The travel path chosen 
for fertilizer application is one possible source of errors. An optimum 
path definition can significantly reduce spreading errors resulting from 
the different changes in the desired application rates. Even the decision 
to drive up and down the field instead of from left and right can have a 
significant influence on the spreading error. In our model, we ignore 
possible constraints imposed by fertilizer spreaders. More specifically, a 
high-resolution sensing approach would also involve more costly, high- 
resolution fertilizer application technologies. In addition, our results 
present a rather optimistic picture of the economic benefits of high- 
resolution sensing approaches. In our model based on production 
functions, we assume that farmers are familiar with the production 
system and the associated spatial differences and can exploit them by 
adjusting fertilizer application. In real-world settings this may be not 
always possible if indicators like NDVI or NDRE are used. 

The direct private economic benefits presented here suggest that 
there is little economic incentive to use VRT for nitrogen application, 
which may also explain the low adoption of these technologies in small- 
scale agriculture. However, precision agriculture technologies, in 
particular drones, not only provide information about the nitrogen sta-
tus of plants, but they can also supply additional information about 
water and heat stress, lack of other nutrients and the presence of diseases 
and weeds (Bogue, 2017; Candiago et al., 2015; Hunt Jr and Daughtry, 

Fig. 8. Difference in net returns between a technology with 2x2m spatial resolution (e.g., drone) and a technology with 50x50m spatial resolution (e.g., soil 
sampling) for two different nitrogen price levels and depending on field heterogeneity represented by the Shannon Index. 
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2018). Farmers can then use this additional information to optimize 
other inputs such as water and pesticides (Moskvitch, 2015) which could 
further reduce the variability of input use, yields and returns. Further-
more, the use of VRT might have a positive impact on crop quality. A 
study by Karatay and Meyer-Aurich (2020) has shown that VRT can 
increase the protein content of wheat. This would improve the profit-
ability of VRT, as a premium is paid for a higher protein content. 

Finally, the use of VRT also implies possible public benefits, i.e., 
reduction of negative environmental impacts (Balafoutis et al., 2017). 
Nitrogen surpluses can leach into groundwater and thus diminish its 
quality (Grizzetti et al., 2011) and consequently VRT nitrogen man-
agement, adapted to the needs of the crop, could reduce negative 
environmental impacts caused by nitrous oxide emissions and nitrogen 
leaching (Zhang et al., 2015; Balafoutis et al., 2017; Tey and Brindal, 
2012). Therefore, targeted nitrogen application using VRT can reduce 
these losses and help avoid nitrate contamination in groundwater to the 
benefit of both society and the environment (Hansen et al., 2017). In 
addition to the positive impact on the environment, the use of VRT could 
also have a positive social side effect by reducing the administrative 
burden for the farmer. However, these benefits are difficult to quantify 
and, in any case, an increase in the price of nitrogen via taxation only 
leads to a small increase in net returns that is unlikely to cover the 
additional costs for the technology. Therefore, it may be necessary to 
seek a combination with other policy measures, i.e., subsidizing such 
technologies (Finger et al., 2019). This kind of policy can help open up 
the environmental and economic opportunities arising from precision 
farming on a wide scale without compromising food production and thus 
contributing to a more sustainable agriculture. 

7. Conclusion 

We developed a bio-economic simulation model to analyze the 
benefits of different sensor techniques in the application of variable rate 
fertilization, ranging from handheld devices, tractor-mounted sensors, 
drones to satellite imagery. The evaluation shows the relevance of 
environmental field characteristics, e.g., heterogeneity of soil conditions 
and spatial clustering of soil types, in relation to the economic benefits of 
VRT. Generally speaking, we find that variable rate technologies only 
provide limited economic benefits under current conditions, e.g., ni-
trogen prices are low so there are no savings pay-offs. Moreover, our 
results show that when there is a high degree of heterogeneity of soil 
conditions, the use of a technology with a higher spatial resolution, such 
as a drone, is more efficient than technologies with lower spatial reso-
lutions. However, the economic benefits are still low. The absolute dif-
ferences in net returns between high- and low-resolution technologies 
are small and may not offset the additional costs of high-resolution 
technology. For example, we find that the cost of using a drone should 
not exceed 6.5 CHF/ha if it is to be more profitable than a low-resolution 
technology such as soil sampling, or likewise not more than 4.5 CHF/ha 
as compared to the use of an N-sensor or a 10x10m satellite image. 

Thus, the adoption of these technologies depends largely on eco-
nomic benefits beyond savings in input expenditures. These include the 
possibility of VRT increasing the protein content of wheat and supplying 
additional information on the state of the plants (diseases, water 
shortages, etc.). Moreover, large-scale adoption will depend on possible 
benefits for farmers arising from the positive environmental effects of 
using VRT. 

A critical assumption in our bio-economic modelling approach is the 
specification of the production function that represents the crop’s 
response to the nitrogen management. Our assumption results in a 
rather flat return (pay-off) function implying decreasing gains with 
higher nitrogen inputs. This must be considered when interpreting of 
our results since the effective response might vary considerably in 
diversified small-scale farming systems such as Switzerland. In this 
context, more precise data from field trials with different technologies 
would be very valuable. Furthermore, incorporating the uncertainty 

caused by translating raw image information into site-specific yield 
response function could be another valuable step. 

Despite these challenges, our findings have important policy impli-
cations. The low economic benefits of VRT will continue to constrain the 
adoption of these technologies in small-scale farming systems. It might 
be necessary to implement specific policy measures to open up the 
environmental and economic opportunities arising from precision 
farming on a wide scale without compromising food production and thus 
contributing to a more sustainable agriculture. We find that nitrogen 
taxation would only encourage the adoption of these sensing technolo-
gies if combined with other policy measures, i.e., subsidizing such 
technologies. Our findings underline that these policy measures should 
not focus primarily on the individual farmer but rather on farmers’ 
networks or specific technology providers such as contractors. It is 
possible that the economic benefits of VRT only play out at larger spatial 
levels. Accordingly, further research could examine the role of networks 
and contractors in the adoption of precision agriculture technologies in 
small-scale farming systems. 
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Fountas, S., van der Wal, T., Gómez-Barbero, M., 2019. Exploring the adoption of 
precision agricultural technologies: a cross regional study of EU farmers. Land Use 
Policy 80, 163–174. 

Basso, B., Antle, J., 2020. Digital agriculture to design sustainable agricultural systems. 
Nat. Sustain. 3 (4), 254–256. 

Basso, B., Ritchie, J.T., Cammarano, D., Sartori, L., 2011. A strategic and tactical 
management approach to select optimal N fertilizer rates for wheat in a spatially 
variable field. Eur. J. Agron. 35 (4), 215–222. 

Basso, B., Dumont, B., Cammarano, D., Pezzuolo, A., Marinello, F., Sartori, L., 2016. 
Environmental and economic benefits of variable rate nitrogen fertilization in a 
nitrate vulnerable zone. Sci. Total Environ. 545, 227–235. 

Basso, B., Shuai, G., Zhang, J., Robertson, G.P., 2019. Yield stability analysis reveals 
sources of large-scale nitrogen loss from the US Midwest. Sci. Rep. 9 (1), 1–9. 

Biermacher, J.T., Brorsen, B.W., Epplin, F.M., Solie, J.B., Raun, W.R., 2009. The 
economic potential of precision nitrogen application with wheat based on plant 
sensing. Agric. Econ. 40 (4), 397–407. 

Bogue, R., 2017. Sensors key to advances in precision agriculture. Sens. Rev. 37, 1–6. 
Bullock, D.S., Bullock, D.G., 2000. From agronomic research to farm management 

guidelines: a primer on the economics of information and precision technology. 
Precis. Agric. 2 (1), 71–101. 
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