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Abstract — Climate-smart agriculture (CSA) is an approach to help agricultural systems worldwide,
concurrently addressing three challenge areas: increased adaptation to climate change, mitigation of climate
change, and ensuring global food security — through innovative policies, practices, and financing. It involves
a set of objectives and multiple transformative transitions for which there are newly identified knowledge
gaps. We address these questions raised by CSA within three areas: conceptualization, implementation, and
implications for policy and decision-makers. We also draw up scenarios on the future of the CSA concept in
relation to the 4 per 1000 Initiative (Soils for Food Security and Climate) launched at UNFCCC 21st
Conference of the Parties (COP 21). Our analysis shows that there is still a need for further interdisciplinary
research on the theoretical foundation of the CSA concept and on the necessary transformations of
agriculture and land use systems. Contrasting views about implementation indicate that CSA focus on the
“triple win” (adaptation, mitigation, food security) needs to be assessed in terms of science-based practices.
CSA policy tools need to incorporate an integrated set of measures supported by reliable metrics.
Environmental and social safeguards are necessary to make sure that CSA initiatives conform to the
principles of sustainability, both at the agriculture and food system levels.
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Résumé — Questions de recherche pour I'agriculture climato-intelligente. L’agriculture climato-
intelligente (Climate-smart agriculture—CSA) a pour objectifs simultanés 1’adaptation au changement
climatique, I’atténuation du changement climatique et la sécurité alimentaire, grace a des politiques, des
pratiques et des financements novateurs. De nombreuses lacunes existent pour la mise en ceuvre de ce concept
afin d’atteindre ces objectifs et permettre les transformations de fond qui sont nécessaires. Nous abordons les
questions soulevées par la CSA dans trois domaines : le défi conceptuel de la CSA, sa mise en ceuvre et les
conséquences en maticre de politiques publiques et pour les décideurs. Nous formulons aussi des scénarios sur
le futur de 1a CSA en lien avec I'Initiative 4 pour 1000 (Les sols pour la sécurité alimentaire et le climat) lancée
lors de la COP 21 (Conférence des parties de la CCNUCC). Notre analyse montre que le concept de CSA
manque de fondements théoriques et qu’une approche interdisciplinaire est nécessaire pour assurer les
transformations indispensables de 1’agriculture et de I’utilisation des terres. Des points de vue contrastés sur la
mise en ceuvre de la CSA indiquent que le «triplé gagnant» de la CSA (adaptation, atténuation, sécurité
alimentaire) doit étre évalué en termes de pratiques scientifiques. Les outils de politiques publiques de la CSA
doivent disposer d’un cadre de référence cohérent s’appuyant sur des métriques fiables. Des garanties
environnementales et sociales sont nécessaires pour s’assurer que les initiatives de CSA sont conformes aux
principes de la durabilité, tant en ce qui concerne 1’agriculture que le systéme alimentaire.

Mots clés : changement climatique / adaptation / atténuation / sécurité alimentaire / sol

*Corresponding author: emmanuel . torquebiau@cirad.fr

This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC-BY-NC (http://creativecommons.org/licenses/by-nc/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


mailto:emmanuel.torquebiau@cirad.fr
https://www.edpsciences.org
https://doi.org/10.1051/cagri/2018010
https://www.cahiersagricultures.fr
http://creativecommons.org/licenses/by-nc/4.0

E. Torquebiau et al.: Cah. Agric. 2018, 27, 26001

1 Introduction

The Climate-smart agriculture (CSA) concept emerged in
2010 as a response to the imminent threat of climate change. In
the original Food and Agriculture Organization (FAO)
document (FAO, 2010), the definition of CSA is: “Agriculture
that sustainably increases productivity, resilience (adaptation),
reduces/removes greenhouse gases (GHG) and enhances
achievement of national food security and development
goals”. CSA has become known for the so-called “triple
win”, i.e., working simultaneously to achieve its three
objectives (or pillars): “adaptation, mitigation, and food
security”. CSA is also sometimes presented as a mechanism to
achieve synergies between the three pillars in a context-
specific manner.

CSA aims to contribute to sustainable landscapes and food
systems as well as to resilience, ecosystem services, and value
chains. It involves a complex set of objectives and multiple
transformative transitions for which there are newly identified
knowledge gaps related to the performance and conditions of
implementing CSA alternatives and measurable outcomes. For
some, CSA is not a scientific or technical concept, but rather a
“political” concept aiming at better incorporating agriculture
in climate negotiations (Fallot, 2016). CSA nevertheless
intends to mobilize science to achieve necessary transitions,
and requires bridging a diversity of disciplines in agricultural
sciences and the environment. Specifically, the use of climate
change science data and models by the agricultural research
community, such as the Intergovernmental Panel on Climate
Change (IPCC) projections, is important (Rosenzweig et al.,
2013). A system approach is needed, along with the
organization of relevant scientific data and policy that will
help to further refine the CSA concept.

The FAO’s original CSA document includes the sub-title:
“Policies, Practices and Financing for Food Security, Adapta-
tion and Mitigation”, indicating that CSA lies at the interface
between science and policy-making and strives to foster action
on the ground and the mobilization of financing. The CSA
approach encourages coordinated actions by farmers, research-
ers, the private sector, civil society and policymakers towards
climate-resilient pathways through four main action areas:

— building evidence;

— increasing local institutional effectiveness;

— fostering coherence between climate and agricultural
policies;

— linking climate and agricultural financing (Lipper et al.,

2014).

Six years after FAO’s first publication on Climate-smart
agriculture, CSA has become a ‘buzzword’ for many in the
agricultural research community as well as among practi-
tioners. There are innumerable websites mentioning CSA.
Books and articles focused on CSA are flourishing as well
(e.g., Campbell et al., 2014, Lipper et al., 2014, 2017; Harvey
et al., 2014; Minang et al., 2015, Torquebiau, 2016, Andrieu
etal.,2017). However, there have also been criticisms by some
civil society organizations claiming that CSA opens “a new
space for promoting agribusiness and industrial agriculture”
(http://www.climatesmartagconcerns.info/rejection-letter.html

Accessed 13/2/2018) and controversies over the meaning of
CSA (Steenwerth et al., 2014). In addition, there are concerns
that CSA can be appropriated to support conflicting agendas,
such as agroecology or conventional agriculture (Pimbert,
2015).

Has the CSA concept come of age? Are there CSA success
stories that match the original CSA definition and achieve the
“triple win” (e.g., simultaneous achievement of adaptation,
mitigation, and food security)? What does CSA mean today for
actual decision-makers such as farmers, companies, and
policy-makers at different levels (local, sub-national, nation-
al)? How do soil carbon sequestration and the 4 per 1000
Initiative (which has objectives similar to those of CSA)
launched at COP 21 integrate into CSA?

To address the above questions and suggest corresponding
research topics, the present paper intends to:

— review achievements and current criticisms of the CSA
concept;

— assess CSA implementation, taking into account particu-
larly the triple-win challenge and synergies or trade-offs
between the three CSA objectives;

— analyze what CSA means for decision-makers;

— analyze the links between soil carbon sequestration and
nitrogen management, and CSA.

2 The conceptual challenge

Since the CSA concept did not arise from the academic
community, its underlying concepts were not aligned with
existing scientific debates, on e.g., sustainability, food security,
resilience, or agroecology. This should not preclude CSA from
being analyzed rigorously. The presence of the word
“sustainable” in the original CSA definition should indicate
that CSA is concerned about the impact of agriculture on future
generations, and its environmental, economic, and social
implications.

Early texts on CSA by FAO (2010, 2013) and Lipper e? al.
(2014) showed a progressive shift in meaning from sustainable
increase in productivity to food security. However, food
security in itself is a complex concept depending on various
conditions (access, availability, utilization, stability) which all
need to be taken into account (Richardson, 2010). Some
authors are consequently using food security indicators such as
the Household Food Insecurity Access Scale or Dietary
Diversity with indicators of social resilience and CO,
emissions to assess the climate smartness of farming systems
(Hammond et al. 2017).

Resilience and resource use efficiency are key guiding
principles for CSA, as presented in Lipper ef al. (2014). The
authors insist that CSA must “emphasize agricultural systems
that utilize ecosystem services to support productivity,
adaptation, and mitigation”. The term ‘resilience’ is sometimes
used interchangeably with ‘adaptation’ in the definition of
CSA (Lipper et al., 2017). The ecosystem approach is a
dominant aspect of CSA (e.g., niche partitioning, ecological
successions, symbiosis), including practices in which those
principles play a key role, such as crop diversification,
intercropping, rotations, cover crops, agroforestry, biological
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control of pests and diseases, plant-animal interactions, and the
use of agrobiodiversity.

Nevertheless, a detailed analysis of FAO’s reference
document on CSA (FAO, 2013) shows that ‘land sparing’
(intensifying in some areas and conserving nature elsewhere;
see Grau et al, 2013) is favored, while ‘land sharing’
(combining objectives of production and protection on the
same land) is not. This does not make biodiversity and
ecosystem services appear as top CSA priorities (Tissier and
Grosclaude, 2015). Given that higher cultivation intensity in
farmed landscapes has been shown to decrease biodiversity
richness and the potential for carbon storage (Renwick et al.,
2014), more emphasis could be given to land sharing.
A landscape approach to CSA could help to address this
weakness, yet this is an under-researched topic (Harvey et al.,
2014; Minang et al., 2015).

There is a growing consensus that the “unintended social
and environmental consequences” of agriculture need to be
addressed (IAASTD, 2009). This consensus has led to greater
acceptance of agroecological concepts, which is occurring
separately from the CSA debates. Agroecology has been
defined differently, ranging from the simple ‘application of
ecological principles’ to agriculture (Oxford Dictionnaries,
2016) to the ‘integrative study of the ecology of the entire food
system’, encompassing ecological, economic, and social
dimensions (FAO, 2015). There are compelling reasons to
link agroecology and CSA and to find solutions that address
both (Saj et al., 2017). The practices of CSA and agroecology
are often one-in-the-same, and can enrich one another.

Agroecology has sometimes been described as being
implicitly climate-smart, but is seldom evaluated for its
climatic performance. Its potential for carbon storage, as well
as adaptation to —or mitigation of— climate change is
sometimes mentioned (e.g., Lichtfouse, 2012; Altieri et al.,
2015) but ‘climate-compatibility’ is not among agroecology
initial objectives. On the other hand, CSA has not been defined
to encompass agroecological principles, but it explicitly does
include elements of such principles. CSA is presented in its
original definition as an approach covering “agriculture and
food systems”. The term ‘food system’ can be understood as
the trajectory ‘from field to fork’. This includes production
systems, post-harvest interventions, pest, disease and water
management, human nutrition, minimizing waste and losses,
food transport, and access to markets.

Assessing whether or not CSA can address these require-
ments along the entire food value chain, while conforming to
its original definition in terms of adaptation, mitigation and
food security, is not a simple task. Holistic approaches such as
life-cycle assessment are useful methodologies. Parallels can
be found here with ‘sustainable agricultural intensification’,
which is a ‘radical rethinking of food systems not only to
reduce environmental impacts but also to enhance animal
welfare and human nutrition and support rural economies and
sustainable development’ (Garnett et al, 2013; Campbell
etal.,2014). The need to develop ‘inclusive food value chains’
in support of CSA was highlighted by the FAO in the founding
CSA documents (FAO, 2013). However, innovative research is
required to assess CSA under this holistic perspective.

Consequently, there is still a need to carefully rethink the
theoretical foundation of CSA. In the thorough review on the
CSA global research agenda published by Steenwerth et al.

(2014), reference is made to the need for further interdisci-
plinary and transdisciplinary research to better understand and
measure CSA processes that may lead to the transformative
changes needed in agriculture. This thinking can help in
designing an improved, holistic CSA paradigm.

3 The implementation challenge

Although FAO’s CSA sourcebook (2013) provides many
examples, CSA is described in terms of objectives to be
reached and not in terms of the means to be employed to reach
those objectives. This leaves it open to users to decide on the
approach to the types of interventions they consider ‘climate-
smart’. Progressively, the CSA concept has also evolved from
achieving the triple win more generally and globally, to
achieving synergies between the three CSA objectives as a
function of local conditions. Indeed, some practices may be
climate-smart in a specific local context, but not in another one,
given agroecological conditions, market opportunities, and
stakeholders’ priorities. Consequently, CSA practices are not
“set in stone” and a broad range of practices is now being
recognized.

This context-specific approach takes into account the
diversity of agricultural systems and stakeholders’ priorities in
order to support CSA implementation and broad adoption
(Andrieu ef al., 2017). It also explains why for many, CSA is
simply a framework to address agriculture under climate
change, thus leaving the door open to many interpretations.
However, this runs the risk of ignoring one or more of the three
pillars with the risk of compromising the overall intentions of
CSA.

When the definition of CSA is taken loosely, without the
requirements for sustainability and for the three CSA pillars,
practices that promote herbicides or energy-or-water-intensive
farming —such as in large-scale industrial monocultures or
biofuel plantations— have sometimes incorrectly been called
‘climate-smart.” Intensive bioenergy crops for instance, have
sometimes been described as climate-smart because they
contribute to renewable energy production. However, these
metrics need to be gauged against other possible land uses (food
crops) and in terms of environmental impact (e.g., biochemical
inputs, biodiversity, and water). Similarly, drought-tolerant
varieties that require high fertilizer inputs may seem well-
adapted to climate stress and produce biomass that can contribute
to food security, but may not perform in terms of mitigation and
resilience to unexpected climatic events.

Operationalizing CSA has often been presented in terms of
dealing with synergies or trade-offs among the three pillars, but
particularly between adaptation and mitigation. Indeed,
mitigation may not be a priority in a given context, particularly
where farmers use low levels of production inputs. Practices
that may be relevant for their positive effects on adaption or
food security may not have a direct effect on mitigation (e.g.,
drought-tolerant varieties). Consequently, some documents
indicate that CSA should aim to reduce emissions “where
possible” (http://www.fao.org/climate-smart-agriculture/en/
Accessed 13/2/2018). Conversely, mitigation options by small
farmers (e.g., options to increase soil organic matter content)
may not show co-benefits in terms of adaptive capacity in the
short term (Steenwerth et al., 2014).
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The question remains whether this is a contradiction with
the original CSA definition, or if the CSA concept should be
broadened to include options that can at least result in positive
outcomes on two pillars. A bias was also introduced in the way
mitigation was taken into account by CSA, since it has often
been promoted in terms of reducing emissions and not in terms
of increasing carbon sequestration through biomass or soil.

Synergies occur when food security, adaptation, and
mitigation not only occur simultaneously (i.e., co-benefits) but
when there is a positive feedback of either on the others. For
instance, if nitrogen-fixing trees are associated with crops to
improve soil fertility (adaptation and food security), soil
carbon content may increase (mitigation) and the resulting
decrease in fertilizer use will lead to a reduction in N,O
emissions (mitigation). Similarly, if compost is incorporated
into the soil with the objective of increasing soil organic matter
(mitigation), better yields and improved livelihoods will result
(adaptation).

There are some CSA ‘success stories’ that provide
examples of synergies and positive feedbacks among the
three pillars. For instance, intermittent irrigation of flooded
rice, also known as the ‘System of Rice Intensification’ (SRI)
has been shown to reduce methane emissions (mitigation),
decrease water use (adaptation and resilience), and increase
yield, and thus food security (Thakur et al., 2016), although
some questions persist about weed control or actual yield
benefit. Farmer-managed regeneration of scattered trees on
cropland in the Sahel (agroforestry) is another case: it
contributes to soil and biomass carbon sequestration, buffers
heat stress and erosion, improves soil fertility and finally leads
to better food security through commodity and income
diversification (Sendzimir et al., 2011). But it needs to be
acknowledged that not all practices will result in synergies and
often may result in trade-offs, and thus, further research is
needed.

Stakeholder-driven analyses of Climate-smart agriculture
require a transdisciplinary effort to consistently link state-of-
the-art data, climate scenarios, and socio-economic trajectories
in crop, livestock, and economic models (Rosenzweig et al.,
2013). Crop and livestock model outputs are aggregated as
inputs to regional and global economic models to determine
regional vulnerabilities, changes in comparative advantage,
price effects, and potential climate-smart strategies in the
agricultural sector (e.g., Rosegrant ef al., 2017). For example,
the Agricultural Model Intercomparison and Improvement
Project (AgMIP) utilizes intercomparisons of these various
types of methods to improve crop, livestock, and economic
models and ensemble projections to produce enhanced
assessments by in-country crop, livestock, and economic
modeling communities (Rosenzweig et al., 2013). These new
methods of regional integrated assessments include iterative
stakeholder inputs to provide an effective science and evidence
base for climate-smart decision-making in farming systems.

4 CSA implications for policy and decision-
makers

Contrasting views exist about the development of the CSA
concept. Some civil society organizations have described
simplifications of the CSA concept as ‘green washing’. The

triple win has also been described as an ‘illusion” which can
only be resolved with trade-offs through political processes
because its three dimensions correspond to negotiating arenas
(poverty alleviation, food security, and climate change
mitigation) that have different stakes and stakeholders (Caron
and Treyer, 2015).

Policymakers in many developing countries, particularly in
Africa, have explicitly included CSA in their Nationally
Determined Contributions (NDCs) prepared in the context of
UNFCCC'’s Paris Agreement (http://unfccc.int/focus/ndc_reg
istry/items/9433.php Accessed 13/2/2018) and there are an
increasing number of climate change plans and strategies that
articulate agriculture and food system adaptation and
mitigation at national levels. More effective policies can be
designed that take into account complementarity between
policy instruments and between implementing institutions.
These need to explicitly seek to avoid antagonistic effects such
as promoting carbon sequestration and simultaneously
subsidizing mineral fertilizers.

Decision-making tools for CSA need to incorporate a
complete set of measures that foster change towards the
concurrent consideration of food security, adaptation and
mitigation in land-use practices and equally importantly, to
promote changes in governance and financing (Torquebiau
et al., 2016). Furthermore, local adaptation and food security
refer to private goods, while mitigation refers to a public
(global) good (Steenwerth et al, 2014); thus they are
consequently funded by distinct financing schemes.

Many decision support tools for policy makers and local
actors have been proposed to take into account the synergies
and trade-offs between the CSA pillars (Campbell et al., 2016)
but these tools falter due to the lack of scientific evidence on
the effectiveness of CSA practices (Rosenstock et al., 2016).
Reliable indicators are required to separate CSA from non-
CSA activities. For this, the development of consistent CSA
metrics, either biophysical, policy-based or finance-related, is
needed. Rosenstock er al. (2016) proposed a reference
framework, with easy-to-measure parameters, such as proxies
for soil carbon sequestration, reduction of GHG emissions, and
cost-benefit analyses of the simultaneous fulfillment of CSA’s
three pillars. Well-designed metrics will contribute to the ex-
post quantification of adaptation or mitigation, and the
achievement of robust cross-site comparisons.

The development of environmental and social safeguards
for CSA is also a very important issue. Specific indicators are
required to ensure that selected CSA technologies and
approaches comply with the implicit CSA sustainability
requirements, e.g., inclusivity of relevant stakeholders;
sensitivity to gender, age, class, or ethnicity; biodiversity
protection; role of family farming and traditional knowledge;
contribution to rural employment; and property or water rights.

Since climate change plans and strategies are relatively
new, there is a lack of documentation of their implementation
at the local level. Some case studies show that farmers have a
growing perception of climate change and of the need to adapt,
but they do not clearly understand the direct consequences to
their farm in the short-, medium- and long-terms (Bormann
et al., 2012). In developing countries where the level of inputs
can be low, mitigation is hardly the entry point to trigger
changes. Collective action is therefore necessary to steer
governance rules and financing towards the three goals of
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CSA. Innovative thinking is required in order to reconcile
policy and practice along complementary lines.

CSA implementation also faces a better understanding of
the capacity of extension services or consultants in each
country to help training farmers on climate-smart practices. It
is well-known that innovative technologies (e.g., agroforestry)
require specific extension support, sometimes not readily
available (Chitakira and Torquebiau, 2010). A better under-
standing of farmers’ views and actions on CSA practices is also
required. In the end, it all comes down to whether or not
individual farmers are willing to adopt the required changes or
have the knowledge and capacity to make those changes
(Chatrchyan et al., 2016).

New financing instruments are also needed to support
changes at all levels, from local, to national and global. The
COP21 Paris Agreement provided a sound basis for further
raising the profile of agriculture within the UNFCCC
negotiations and developing new financing instruments for
climate change and agriculture. The recent COP23 (November
2017) has officially brought agriculture into the negotiations.
This will bring greater focus on implementing climate actions
in the sector as opposed to negotiations focused on scientific
and technical aspects only. Finally, there is an increasing
awareness that achievement of CSA globally will require
policy interventions at all levels, and including multiple actors
(Chatrchyan et al., 2018 forthcoming).

5 Case study: the 4 per 1000 Initiative

At COP21 climate negotiations in Paris, the 4 per 1000
Initiative “Soils for Food Security and Climate’ was launched
to promote the role of soil organic matter in addressing the
triple challenge of food security, adaptation of agriculture to
climate change, and mitigation of greenhouse gas emissions
(Lal et al., 2015; Minasny et al., 2017; Soussana et al., 2018).
The similarity with CSA is striking in terms of objectives, but
the 4per 1000 initiative focuses solely on soil carbon
management as a means to achieve its goals. The rationale
for the 4 per 1000 program is that a 0.4% annual growth rate of
the carbon stock of all soils of the world would make it possible
to offset the present annual increases in atmospheric CO,.

Practices put forward to contribute to soil carbon
sequestration include permanent soil cover, agroforestry, crop
rotations (especially with legumes), organic fertilizers,
conservation agriculture, agroecology, precision agriculture,
improved grazing practices and quality of fodder, integrated
soil fertility management, and improved water management.
The practices encouraged under the 4per 1000 concept
consider mitigation both in terms of increasing carbon
sequestration through biomass or soil and in terms of reducing
GHG emissions. CSA can correct some of its weaknesses (and
provide answers to criticisms) through a stronger focus on
increasing soil organic matter by incorporating the 4 per 1000
principles as a component. This can be achieved not only in
terms of soil carbon sequestration practices, but also by
encouraging policies and institutional reforms that alert more
stakeholders to the need for better soil management. But
further evidence is needed to document the actual benefits and
long-term metrics of both CSA and 4 per 1000 measures. This
in turn could increase farmers’ adoption of sustainable

practices and attract more financing for CSA and 4 per 1000
alike. However, it must be clarified that soil carbon
sequestration does not happen independently from other
sources of nutrients, especially phosphorus and nitrogen.

Indeed, synthetic nitrogen fertilizer continues to be the
largest used macro-element on the planet for crop production
systems. Over-use of nitrogen fertilizer is among the known
causes and is the largest anthropogenic source of the potent
GHG, nitrous oxide (N,O) emissions in the biosphere
(Denman et al., 2007). In parallel, the nitrogen use efficiency
continues to be less than 50% globally (Lassaletta, et al.,
2014). Multipronged approaches and research are needed to
empower farmers globally to adopt practices to increase the
efficient use and application of nitrogen fertilizer. Rather than
slow, incremental and evolutionary progress, revolutionary
advances are needed in fertilizer management, such as the
“Five-R” approach to reduce the ecological footprint (Right
Input, at the Right Time, in the Right Amount, at the Right
Place, and in the Right Manner) which can be applied to
nutrient stewardship and is among the techniques that are scale
independent (for large and small scale farming systems). It has
been shown to optimize input sources, placement, amount,
timing, and manner, while reducing nitrous oxide emissions,
and maximize output, efficiency, and profitability in a
sustainable manner (Khosla, et al., 2008).

Biological nitrogen fixation through legume plants and
symbiotic rhizobia has also a key role to play. Provided there
are adequate phosphorus concentrations and sufficient water,
symbiotic nitrogen fixation, combined with improved nutrient
management, can certainly match CSA requirements in terms
of adaptation (particularly in multiple cropping situations),
mitigation (accumulated biomass and decrease of N,O
emissions) and food security.

6 Conclusions

As amajor paradigm breakthrough, CSA raises unexpected
questions. In this article, we have shown that CSA is both a
technical and a political concept, requiring the bridging of
several disciplines, and that achieving the three pillars of CSA
concurrently is certainly not an easy task. We have described
major implementation challenges of CSA and detailed key
implications for policy and decision-makers. We have shown
how soil carbon sequestration and CSA can be integrated and
encouraged as complementary approaches. These reflections
have raised several research questions which need to be
addressed for CSA to be adopted. Compared to conventional,
monodisciplinary research questions (e.g., breeding a crop for
higher yield), CSA research entails a fair amount of
uncertainty. Questions remain around how to strike the right
balance between the three CSA criteria, how to measure CSA
performance, and how to reconcile such a complex paradigm
with farmers’ decisions. Not to mention the required
negotiation processes between stakeholders and the necessary
policy changes that need to take place. The tangled web of
climate change mechanisms makes the equation “mitigation
+ adaptation + food security” a thorny one to solve (Torque-
biau et al., 2016).

Agriculture, the human activity probably most dependent
on the climate, was initially seen as a victim of climate change.
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Increasing temperature trends, higher frequency of weather
extremes and greater seasonal variability have all been
described as representing new threats for agriculture world-
wide. Agriculture has then been regarded as one of the culprits
responsible for climate change, because of direct greenhouse
gases emissions through ruminants, fertilizer manufacturing
and application, and on-farm energy use or indirect emissions
related to land use change. Agriculture is now beginning to be
also viewed as a solution to climate change, because of the role
it can play in terms of GHG mitigation. Climate-smart
agriculture can help to design land-use systems that make the
adaptation-mitigation connectivity a reality at all scales and
hence help farmers to become leading actors of climate change
solutions.
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