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Abstract: Although the benefits of genetically modified (GM) crops have been well documented,
how do farmers manage the risk of new technology in the early stages of technology adoption has
received less attention. We compare the total factor productivity (TFP) of cotton to other major crops
(wheat, rice, and corn) in China between 1990 and 2015, showing that the TFP growth of cotton
production is significantly different from all other crops. In particular, the TFP of cotton production
increased rapidly in the early 1990s then declined slightly around 2000 and rose again. This pattern
coincides with the adoption of Bt cotton process in China. To further investigate the decline of TFP in
the early stages of Bt cotton adoption, using aggregate provincial-level data, we implement a TFP
decomposition and show that the productivity of GM technology is higher, whereas the technical
efficiency of GM technology is lower than that of traditional technologies. Especially, Bt cotton
exhibited lower technical efficiency because farmers did not reduce the use of pesticide when they
first started to adopt Bt cotton. In addition, we illustrate the occurrence of a learning process as
GM technology diffuses throughout China: after farmers gain knowledge of Bt cotton, pesticide use
declines and technical efficiency improves.

Keywords: genetically modified crops; technical efficiency; total factor productivity; Bt cotton;
risk management

JEL Classification: D13; O33; Q16

1. Introduction

The development of genetically modified (GM) crops has been considered as the most
successful application of agricultural biotechnology research to date (Wu and Butz 2004).
The GM technology has been the most rapidly adopted crop technology in recent history
because of its sustainable and substantial economic, socioeconomic, and environmental
benefits (James 2016). According to the statistics of the International Service for the Acqui-
sition of Agri-biotech Applications (ISAAA), 190 million hectares (ha) of GM crops were
planted amongst 29 countries worldwide in 2019 (James 2019).

Even if GM technology has achieved multiple benefits (See Pray et al. 2001; Huang et al.
2002a, 2002b, 2003; Hossain et al. 2004; Brookes and Barfoot 2005; Qiao 2015; Qiao et al. 2016;
Qaim 2003; Kathage and Qaim 2012 on the discussion of economic benefits, the benefits in
terms of human health and the environment), there are few studies in the literature that
document its adoption process from the farmers’ risk management perspective. From the
farmers’ perspective, only if the potential benefit of new technology overcomes traditional
technology, will farmers choose the new technology (Chavas and Nauges 2020). Hence,
farmer’s adoption decision plays a decisive role in the new technology adoption process
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(Lu et al. 2016; Pardey et al. 2016; Zilberman et al. 2019; Reardon et al. 2019; Rao et al. 2019;
Hatzenbuehler et al. 2021).

Studying the new technology adoption process from a farmer’s perspective has sig-
nificant implications for risk and risk management. A better understanding of whether
the new technologies offer a critical improvement over the traditional ones can help to
overcome low adoption by consumers, support from policymakers, and ultimately im-
prove the attitudes of consumers. Understanding the learning process can also help to
design strategies to decrease the variance in the performance of the technology. Thus,
policymakers can better understand whether the technology needs certain support through
subsidies or technical assistance.

In this study, we tested the TFP growth trend of cotton is different from the other
three grains and TC and TEC changes of cotton belongs to the adoption of new technology.
We found that there is a learning process in the adoption of Bt technology occurs. we
first document the stylized fact that when comparing the total factor productivity (TFP) of
cotton to other major crops (wheat, rice, and corn) in China between 1990 and 2015, the
TFP growth pattern of cotton production is significantly different from all other crops. In
particular, the TFP of cotton production increased rapidly in the early 1990s then declined
slightly around 2000 and rose again. This pattern coincides with the adoption of Bt cotton
process in China. To further investigate the decline of TFP in the early stages of Bt cotton
adoption, using aggregate provincial-level data, we implement a TFP decomposition and
show that the productivity of GM technology is higher, whereas the technical efficiency
of GM technology is lower than that of traditional technologies. Especially, the lower
technical efficiency in Bt cotton is due to the fact that farmers did not reduce the use of
pesticides when they first started to adopt Bt cotton, which is albeit an input waste but
also a risk management strategy to deal with the uncertainties around the new technology.
In addition, this study also demonstrates the occurrence of a learning process as GM
technology diffuses throughout China: after farmers gain the knowledge of Bt cotton,
pesticide use declines, and technical efficiency improves.

Our contribution to the literature is twofold: first, to our knowledge, this is first paper
that documents the decline in technical efficiency after adopting a new technology. Second,
this is also the first article that links the learning-by-doing effect to the decline in technical
efficiency after adopting a new technology.

The remainder of this paper is organized as follows. In Section 2, we discuss the
national representative data and the sampled major cotton production provinces included
in this study. Using these data, in Section 3 we calculate and compare the total factor
productivity (TFP) and technological efficiency. The learning process is discussed in
Section 4. The final section provides a conclusion.

2. Advantages of Bt Technology over Non-Bt Technology

According to the classic theory of technology adoption and diffusion, new technology
requires a learning process, since it takes time for new adopters to fully master it (Evenson
and Westphal 1995; Conley and Udry 2010; Qiao and Huang 2020). If the new technology
is similar to the traditional one, then the learning process is trivial. For example, new
seed varieties are introduced every few years in China. However, since the new varieties
have no different requirements in terms of production practices from those of traditional
varieties, a learning process is not needed.

On the other hand, the main advantage of Bt cotton in China is the reduction of input
(i.e., pesticide use). Bt cotton adopters need to spray less pesticide than those who planted
traditional varieties (i.e., non-Bt varieties). That is, the production practices of Bt cotton are
different from those of non-Bt cotton. Hence, if Bt cotton adopters still follow the traditional
way (i.e., the way of planting non-Bt cotton) then, in practice, the technical efficiency of Bt
cotton would be below. Hence, we expect that a learning process for Bt technology occurs.
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In this section, we want to test our three hypotheses. In order to test Hypothesis 1, we
first calculate the TFP of cotton and grain crops. Bt cotton is the only commercialized GM
crop in China, while all of the grain crops are non-GM. In other words, the technologies of
grain crops are all traditional technologies. Second, we decompose the TFP growth rate to
TC, TEC, and residual. Then compare TC and TEC before and after Bt cotton technology is
adopted respectively to test Hypotheses 2 and 3.

Hypothesis 1 (H1). The TFP growth trend of cotton is different from the other three grains.

Hypothesis 2 (H2). Compared to before the adoption of Bt cotton technology, the growth of TC
pattern is different after the adoption of the new technology.

Hypothesis 3 (H3). Compared to before the adoption of Bt cotton technology, the growth of TEC
pattern is different after the adoption of the new technology.

2.1. Empirical Model

To estimate TFP, the trans-log form production function is introduced by Battese and
Coelli (1995) and has been routinely used in previous studies, such as those by Jin et al.
(2010), Darku et al. (2016), and Wang et al. (2016). Following these studies, the trans-log
form production function is used in this study.1 Specifically, the trans-log production
function can be written as:

yit = β0 +
3
∑

j=1
β jxjit + γ1year + 1

2 γ2year2 + 1
2

3
∑

j=1

3
∑

l=1
β jl xjitxlit +

3
∑

j=1
βtjyearxjit + vit − uituit = year + ∑i Provincei + wit (1)

In Equation (1), i is the ith province, while t is the tth year; w and v are error terms.
The dependent variable y is output (measured in kg/ha). In this study, we consider the
outputs for three grain crops (wheat, rice, and corn) and cotton.

Xit is a vector of traditional input variables. In this study, we consider three impor-
tant traditional inputs: fertilizer, labor, and pesticide. According to the data, shares of
these three inputs in total production cost are 59.18%, 70.22%, 71.72%, and 80.47% for
wheat, rice, corn, and cotton, respectively. Hence, we believe adding these three input
variables can sufficiently capture the impact of inputs on production. As in previous
studies (Wang and Wong 2012; Xiao et al. 2012; Zhou et al. 2015), we add time trend (i.e.,
year) variable in Equation (1). Specifically, “year” and “year2” capture the non-monotonic
impact of technology innovations, while the interaction terms of year and other input
variables accommodate Hicks-neutral technological progress. Finally, province is a vector of
provincial dummies. In this study, province dummies are added to consider the impact of
those time-invariant geographic factors.

However, due to the well-known co-linearity problems between the explanatory
variables, especially the interaction terms, most of the estimated coefficients of the input
variables are statistically insignificant, as shown in Table 1.2 As the core of this study is to
analyze the advantages of Bt technology over non-Bt technology, for simplicity, we focus
the remaining discussion on the dynamics of TFP, technical change, and technical efficiency
of cotton and grain crops.
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Table 1. Estimation results of Translog production function.

Cotton Wheat Corn Rice

Frontier Coeff S.D. Coeff S.D. Coeff S.D. Coeff S.D.

Constant 2.605 2.162 5.747 *** 1.059 2.868 *** 0.946 6.808 *** 0.961
Time 0.058 0.060 0.044 ** 0.022 −0.080 ** 0.034 0.015 0.030
Time2 0.002 ** 0.001 0.000 0.000 0.000 0.001 0.001 *** 0.001

Time * Lnlabor −0.018 0.017 −0.008 ** 0.004 0.012 * 0.007 −0.005 0.006
Time * Lnfertilizer 0.003 0.010 −0.003 0.006 0.010 0.009 −0.008 0.007
Time * Lnpesticide 0.004 0.010 0.005 ** 0.003 −0.004 0.004 0.008 * 0.005

Lnlabor 0.599 1.023 −0.219 0.297 0.833 * 0.454 −0.150 0.357
Lnfertilizer −0.534 0.519 0.098 0.246 0.015 0.196 0.390 0.258
Lnpesticide 0.384 0.656 −0.091 0.522 1.075 ** 0.511 −0.470 0.476

(1/2) * (Lnlabor)2 0.006 0.297 0.006 0.07 −0.229 * 0.121 0.022 0.098
(1/2) * (Lnfertilizer)2 −0.052 0.210 0.016 0.174 −0.252 0.177 0.119 0.162
(1/2) * (Lnpesticide)2 −0.234 ** 0.104 0.038 0.046 0.021 0.023 −0.005 0.041

(1/2) * (Lnlabor) * (Lnfertilizer) −0.290 0.337 0.160 0.159 −0.055 0.178 0.151 0.213
(1/2) * (Lnlabor) * (Lnpesticide) 0.096 0.291 0.051 0.097 0.133 0.082 −0.145 0.112

(1/2) * (Lnfertilizer) * (Lnpesticide) 0.425 ** 0.197 −0.158 0.166 −0.154 0.104 −0.113 0.115

MU
Constant −0.314 0.397 0.560 *** 0.066 0.466 *** 0.066 0.243 *** 0.059

Time −0.002 0.005 −0.011 *** 0.003 0.000 0.004 −0.016 *** 0.004
Provincial dummy variables YES YES YES YES

Sigma-squared 0.034 *** 0.006 0.027 *** 0.004 0.015 *** 0.001 0.006 *** 0.001
Gamma 0.908 *** 0.100 0.934 *** 0.029 0.393 *** 0.103 0.631 *** 0.085

Log likelihood 125.370 243.770 271.800 250.700
Observation 243 291 397 185

Note: t-statistics; *** p < 0.01, ** p < 0.05, * p < 0.1.

2.2. Growth Rate of TFP

As shown in Figure 1, the growth rates of TFP for all of the grain crops (i.e., wheat,
rice, and corn) show a very similar and slightly increasing trend over time. In other words,
the dynamics of technological innovations and improvements in grain crops seem similar.
Further observation shows that the inputs of all of the grain crops have similar monotone
(either decrease or increase) trends over time.

On the other hand, the dynamics of TFP growth for cotton show a very different
pattern from those for grain crops. As shown in Figure 1, TFP growth for cotton was
negative for the first few years, when the development of the pest resistance caused
significant yield loss in the early 1990s (Huang et al. 2002b). Since then, the growth
rate of TFP became positive as farmers have used mixed and/or alternative pesticide
methods to control cotton bollworms. In addition, farmers began to plant Bt cotton in
1997. Consequently, TFP growth accelerated since the middle of the 2000s, when Bt cotton
dominated.

Importantly, Figure 1 shows that cotton experienced different TFP growth from grain
crops. Although the TFP growth for cotton and for grain crops increased over time, with
a similar overall growth rate, the dynamics of TFP growth for cotton were significantly
different from that for grain crops. In other words, Figure 1 seems to show that the
technological progress for cotton is different from that for grain crops.
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2.3. Technical Changes before and after Bt Technology Adoption

To understand the source of the differences between the TFP growth for cotton and
for grain crops, we then decompose the growth rate of TFP into different parts. Specifically,
following Kumbhakar and Lovell (2000), we decompose the growth rate of TFP into three
parts: technology change (TC), technical efficiency change (TEC), and residual.

.
TFP = TC + TEC + residual (2)

In Equation (2), the first term, i.e., TC, measures the change in frontier output. That
is, a positive TC means the technical change shifts the production frontier upward for a
given level of inputs. In other words, fast technological innovations or improvements are
associated with a high TC, and vice versa. Equation (3) shows how the technology change
is estimated.

T̂Ci = γ̂1 + γ̂2 ∗ year +
3

∑
j=1

βtjxjit (3)

The second term of Equation (2), i.e., TEC, is the growth rate of the technical efficiency.
This term can be interpreted as the rate at which an inefficient adopter catches up to
the production frontier. A high TEC means that the full advantage of new technology
is achieved at a fast speed, and vice versa. Equation (4) shows how technical efficiency
change is estimated.

ˆTECi = exp(ûi) (4)

In the following, we will first check the dynamics of the TC of Bt technology. By
doing so, we will show whether the spread of Bt technology is associated with increasing
TC values. That is, we want to test whether Bt technology adoption leads to significant
technological progress. Calculation of the TC for each province over time is shown in
Figure 2.
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To compare the TC before and after Bt cotton adoption, we further divide the whole
observation into two time periods: 1997–2001 and 2002–2014. As discussed above, Bt cotton
was introduced in 1997, although the share of Bt cotton was less than 50% before 2002.
Hence, the first time period, 1997–2001, shows the TC when traditional technology (non-Bt
technology hereafter) was dominant. On the other hand, the share of Bt cotton is greater
than 50% since 2002 and is consistently high (more than 80%) after that. In other words, Bt
cotton is dominant in the second time period. Hence, the second period, 2002–2014, shows
the TC of the new technology (Bt technology hereafter).

Figure 2 shows that the TC of the second time period (i.e., Bt technology) is higher
than that of the first time period (i.e., non-Bt technology). In other words, the growth
of technology accelerated from the first time period to the second time period. Further
calculation shows that the average technical change is 0.93% for non-Bt technology, while
it is 1.87% for Bt technology. In other words, the technical change increased 101.8% from
the non-Bt technology period to the Bt technology period. Hence, Figure 2 provides solid
evidence that the new technology (i.e., Bt technology) has higher productivity than that of
the traditional technology.

From our empirical results, we found that all of our three hypotheses are true. The
TFP growth trend of cotton is different from the other three grains. We observed that the
TFP growth pattern of cotton is increasing in the beginning, slightly decreasing, and then
increasing again. While the TFP growth rates of the other three grains are very stable.
Compared to before the adoption of Bt cotton technology, the growth of TC and TEC
patterns are different after the adoption of the new technology. We observed that after the
adoption of Bt technology, the average TC increased almost 100% than before. At the same
time, the average TEC decreased. While we did not find similar changes on grain crops.

3. Data

Data were obtained from the All China Data Compilation of the Costs and Returns of
Main Agricultural Products (Quanguo Nongchanpin Chengben Shouyi Ziliao Huibian—in
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Chinese Pinyin) and the China Statistical Yearbook (Zhongguo Tongji Nianjian—in Chinese
Pinyin). Specifically, the data regarding expenditures on pesticides, labor use, and fertilizer
use, as well as yields of cotton and grain crops (wheat, rice, and corn), were obtained from
the All China Data Compilation of the Costs and Returns of Main Agricultural Products
(National Development and Reform Commission, various years).3 The data on national
total sown areas of cotton and grain crops and price indexes were obtained from the China
Statistical Yearbook (National Bureau of Statistics of China (NBSC), various years. Finally,
due to a lack of national statistics, the percentages of Bt cotton in different provinces
were mainly obtained from the Center for Chinese Agricultural Policy (CCAP), Chinese
Academy of Sciences.4

In this study, ten major cotton production provinces were selected. China has three
major cotton-producing regions: the Yellow River valley, the Yangtze River valley, and the
Northwest (Hsu and Gale 2001). Xinjiang Uygur Autonomous Region, in the Northwest
region, China’s largest cotton production province, is included in this study. In addition,
five provinces from the Yellow River valley—Shandong, Hebei, Henan, Shaanxi, and
Shanxi; and four provinces from the Yangtze River valley—Hubei, Anhui, Jiangsu, and
Jiangxi, are included in the study. These nine provinces are also the second to fourteenth
largest cotton-producing provinces in China (NBSC [2008] 2013).5 The total cotton sown
area of these ten provinces included in this study is 4.06 million ha, which is 93.46% of
the national total sown area. The variables used in this study are summarized in Table 2.
Table 2 shows the average yield and three main inputs (pesticide, fertilizer, and labor)
usages of cotton and three grain crops in China from 1990 to 2015. We can observe two
facts from Table 1: (1) All the three inputs of cotton are higher than the other three crops,
and (2). cotton production, especially, is a labor and pesticide intensity process

Table 2. Summary statistics of average inputs and output of cotton and three grain crops in China from 1990 to 2015.

Cotton Corn Rice Wheat

Mean Standard
Deviation Mean Standard

Deviation Mean Standard
Deviation Mean Standard

Deviation

Yield (kg/ha) 70.62 9.80 397.33 49.00 477.87 26.77 304.52 53.44
Pesticide (yuan/ha)) 24.00 4.96 2.79 1.33 8.17 3.07 3.31 0.95
Fertilizer (yuan/ha) 48.52 11.69 31.79 5.80 34.91 8.85 36.67 7.49

Labor (yuan/ha) 234.52 125.80 79.91 36.42 98.11 40.42 54.62 19.37
Observation 234 397 185 291

4. Dynamics of Technical Efficiency and the Learning Process
4.1. Technical Efficiency of Bt and Non-Bt Technologies

We check whether a learning process occurs in two steps. First, we compare the TE
of non-Bt technology with that of Bt technology. As non-Bt cotton has been planted for
decades, farmers know the non-Bt technology well. On the other hand, Bt technology is a
new technology and farmers did not plant Bt cotton until 1997. Hence, we expect that the
TE of non-Bt technology is higher than that of Bt technology. Second, we then compare the
optimal level (in terms of maximizing output) and the actual level of pesticide use since
Bt cotton was commercialized. By doing so, we should be able to tell whether a learning
process has occurred.

The values of TE before and after Bt technology adoption are shown in Figure 3.
Even though it is difficult to be certain from the scatter plot, it seems that the TE shows a
decreasing trend over time. Figure 3 appears to show that the TE of non-Bt cotton is higher
than that of Bt. To further show the difference, we then calculated the average values of
the TE of non-Bt technology (i.e., 1997–2001), and the TE of Bt technology (i.e., 2002–2014).
As shown in Figure 4 (bars), the average value of TE for 1997–2001 is higher than that for
2002–2014.
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This result is as expected. As discussed earlier, non-Bt cotton is a traditional technology.
There is no need for adopters to learn how to plant the new varieties. As farmers know the
technology well, a high TE is expected. On the other hand, Bt technology requires different
production practices. Hence, if adopters planted Bt cotton and followed the same planting
methods as for traditional non-Bt cotton, a low efficiency would be expected.

4.2. A Learning Process for Bt Technology

In order to uncover the source of the differences between the TFP and TC for cotton
and for grain crops, we then show the dynamic of the different inputs. As shown in
Figure 5, both fertilizer cost and labor cost show monotone and smooth increases over
time. On the other hand, pesticide use shows a significant decrease after 1997 when the
use of Bt technology spread rapidly and widely. In addition, after 2002, when Bt cotton
dominated, pesticide use remained constant or slightly increased over time. Hence, it
seems that the non-monotone dynamics of the TFP and TC for cotton are associated with
the non-monotone dynamics of pesticide use.
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As the main advantage of the new technology (i.e., Bt technology) is reduced pesticide
use, in the following section we will check whether a learning process exists by showing
the dynamics of pesticide use after the introduction of Bt cotton. Specifically, we show both
the theoretical optimal level of pesticide use and the level that farmers spray in practice. We
then use the difference between these two levels as an index for technical efficiency. A high
difference means a low technical efficiency, while a low difference means high technical
efficiency. In addition, if a decreasing differences trend (i.e., an increasing TE trend) is
shown after Bt cotton was commercialized, we can conclude that a learning process occurs.

As shown in Figure 5, the difference between the optimal level of pesticide use and
the real level of pesticide use decreased sharply during the 1997–2001 period, as Bt cotton
use spread rapidly in China. On the other hand, as the share of Bt was more than 50% in
2002, the dynamics of the different show a constant trend. In other words, Figure 5 seems
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to show that over time the amount of pesticide that farmers sprayed became closer to the
economically optimal level of pesticide use. That is, the economic loss became smaller over
time, while the TE became larger.

The results shown in Figure 5 are consistent with our expectations. When Bt cotton
was first introduced, farmers might not have been entirely knowledgeable of or have
wished to follow the special requirements of the new technology (i.e., less pesticide use in
agricultural production). Previous studies showed that farmers still overused pesticides
for the first few years after Bt cotton was introduced (Liu and Huang 2013). However, with
the spread of Bt cotton use, farmers learned from their own experiences, as well as those
of their neighbors and others (Umetsu et al. 2003; Genius et al. 2014; Barham et al. 2015;
Atkin et al. 2017; Gordon et al. 2021). Consequently, they gradually reduced the amount of
pesticide used, which made the actual pesticide use closer to the optimal pesticide use. As
a result, the TE increased over time. The dynamics of the actual pesticide use and optimal
pesticide use, as shown in Figure 5, show a clear and interesting learning process for Bt
technology.

5. Conclusions and Implications

In this study, we empirically show that GM technology is a better technology than the
traditional one as the TFP of GM crops is higher. Interestingly, we also show that there is a
learning process for this new technology.

The results of this study have important implications in practice. Although the
worldwide benefits and sustainability of GM crops have been well documented, negative
attitudes towards the new technology have seemed to dominate in the public and in the
media in recent years (Kathage and Qaim 2012; Qiao 2015; Yu et al. 2020; Min et al. 2021).
For this reason, at least in part, the Chinese Government has stalled the commercialization
of other GM crops, even though many of them (for example GM corn and rice) are ready
for agricultural production (Yu et al. 2020). In this way, delays in commercialization lead
to significant economic losses (Xie et al. 2017; Jin et al. 2019). Undoubtedly, the empirical
results of this study might contribute to a wider public debate in China, as well as in other
countries, and therefore the development of GM technology worldwide.

The adoption and learning process have implications for risk management. The TFP
of cotton production in China coincides with the adoption of the Bt cotton process. At first,
farmers did not reduce the use of pesticide because of the uncertainties related to the new
technology and established practices. Because farmers did not reduce the use of pesticide,
Bt cotton exhibited lower technical efficiency. It was only after farmers gained knowledge
of Bt cotton, that pesticide use declined, and technical efficiency improved. The learning
process thus, affects risk through adoption, the implementation of the new technology
and potential setbacks, and implications on diversification of production practices. Future
studies could also link technology adoption decisions to supply chain flexibility and
resilience (Du et al. 2016; Lu and Winfree 2021; Lu et al. 2021), transition from traditional
retail to e-commerce (Reardon et al. 2021a, 2021b).
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Notes
1 Another reason that we use trans-log production function, rather than Cobb–Douglas production function, is that the technology

neutral hypothesis is tested and rejected in this study.
2 Following the methods of Battese and Coelli (1995), we deleted some interaction terms and re-estimated Equation (2) and

obtained very similar TFP and technical efficiency to those when all interaction terms are included. In addition, different
interaction terms are dropped for different crops functions.

3 Since 1953, the National Development and Reform Commission began to conduct household surveys to understand the costs
and returns for each of the major crops. For cotton, the sample counties were selected based on sown area and production in all
major cotton production provinces, while households were randomly selected in sample counties. The households were revisited
in the following years unless they were not representative (for example some farmers abandoned cotton production). According
to the 1999–2003 year data (no sample information is released after 2003), the average sample size is more than 1500.

4 To be more specific, the percentages of Bt cotton for most of the provinces of the Yellow River and the Yangtze River valleys are
obtained from the CCAP data. However, the percentages of Bt cotton for Xinjiang and Gansu provinces are obtained from the
author’s calculation based on Li et al. (2013).

5 Due to lack of data on the share of Bt ratio, Hunan, Gansu, and Tianjin provinces are excluded from this study.
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