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Abstract: For an intelligent agricultural robot to reliably operate on a large-scale farm, it
is crucial to accurately estimate its pose. In large outdoor environments, 3D LiDAR is a
preferred sensor. Urban and agricultural scenarios are characteristically different, where the
latter contains many poorly defined objects such as grass and trees with leaves that will
generate noisy sensor signals. While state-of-the-art methods of state estimation using LiDAR,
such as LiDAR odometry and mapping (LOAM), work well in urban scenarios, they will fail
in the agricultural domain. Hence, we propose a mapping and localization system to cope
with challenging agricultural scenarios. Our system maintains a high quality global map for
subsequent reuses of relocalization or motion planning. This is beneficial as we avoid the
unnecessary repetitively mapping process. Our experimental results show that we achieve
comparable or better performance in state estimation, localization, and map quality when

compared to LOAM.
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1. INTRODUCTION

LiDAR mapping and localization has been widely studied
in the literature Magnusson et al. (2007); Kohlbrecher
et al. (2011); Zhang and Singh (2014). However, most
focus on indoor, urban or city scenarios. The difference in
characteristic of urban and agricultural scene is significant.
In an urban scene such as a city, sufficient features such
as lines, planes, corners from houses, pavements, etc.,
can be extracted for scan registration. In an agricultural
scene, objects such as grass, tall trees, tree leaves can not
provide reliable features for detection to the same extent.
For example, a tree leaf is unlikely to be observed twice
in two consecutive scans. The ground in a farm is more
likely to be rugged and not flat as a city street. These
challenges prevent directly applying conventional method
such as LOAM.

In this work, we propose a complete online 3D mapping
and localization for our agricultural mobile robotic plat-
form Thorvald II Grimstad and From (2017). The robot
is capable of i) incrementally building and localizing in a
3D map using 3D point cloud data, i) the global built
map can be stored for subsequent reuse. Specifically, an
optimization-based approach is used for estimating the
robot odometry. We also employ loop-closure detection
to ensure the large built 3D map is consistent and us-
able for later tasks without rebuilding it every time. For
relocalization in a pre-built 3D map, we employ a normal
distribution transformation (NDT) scan matching method
in Stoyanov et al. (2012). Both processes (map building
and relocalization) are guaranteed to run online on the
robot onboard computer. In summary, we highlight the
contributions of this work as follows:

e a complete online 3D LiDAR mapping and localiza-
tion system for autonomous agricultural robots

e high quality built map for human operator and sub-
sequent reuse

e an evaluation of the proposed system on both simu-
lation and real experiments

We notice that existing methods such as LOAM can store
its built map and use it for relocalization purposes. How-
ever, the authors of LOAM does not focus on this func-
tionality. Hence, our proposed system fills in the gap for
agricultural applications. Even though our method is not
suitable for crop field environments, where the appearance
of plant gradually changes, it is still applicable for other
agricultural tasks such as product transportation between
fields and storage, between polytunnels. Therefore, we
argue that our proposed system is still useful.

The paper is organized as follows: In section II, we re-
view related work. Section III depicts our hardware sys-
tem overview. Section IV and V discuss the 3D LiDAR
map building and localization. Experimental results are
presented in Section V and conclusions are discussed in
Section VI.

2. RELATED WORK

Several works on mapping and localization in agricultural
domain have been focused on crop field environment. Early
work by Khanna et al. (2015) proposed a simple mapping
solution by using a stereo camera for generating 3D point-
cloud but using a commercial software. Albani et al. (2017)
proposed a decentralized multi-UAV system for crop field
mapping and weed detection. However, the system was
only tested in simulation without any validation from
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real field. Popovié et al., Popovi et al. (2017) proposed
a Gaussian Process model for generating a multiresolution
map for biomass monitoring. More recently, Chebrolu et
al., Nived et al. (2019) combined aerial images and ground
images for localizing in a prebuilt-aerial map of a sugar
beet field. The aerial map is continuously updated after
each session to maintain a high localization accuracy.

Beside crop fields, a robot might need to travel to other
parts of a farm. For example, the robot might need to
transport harvested products from crop fields to storage.
For this task it also requires a good 3D map since the
terrain on a farm is unlikely to be globally flat. Therefore,
in this work, we aim to solve a 3D mapping and local-
ization problem using 3D LiDAR for agricultural logistics
application.

We focus on geometry approach for LIDAR odometry esti-
mation. The state-of-the-art method, LOAM, is presented
in Zhang and Singh (2014, 2017). The method leverages
point feature to edge/plane scan-matching for scan reg-
istrations. The state estimation is further divided into a
cascade system: velocity is estimated with low accuracy
but at high frequency and motion estimation runs at low
frequency but returns high accuracy estimation. The fused
output of the system is a high frequency and high accuracy
motion estimation. The result of odometry estimation by
LOAM is still by far the best on the KITTI odometry
benchmark ' .

We notice a couple drawbacks that prevent us from di-
rectly implementing the original LOAM method. First,
LOAM needs to iterate through every point in a given
point cloud to compute features for scan matching. This
poses a computational bottle neck. Second, an agricultural
robot is likely to work in an environment filled with trees,
grass, which makes detected features unreliable. For ex-
ample, an edge feature from a tree leaf is unlikely to be
observed twice for matching. Or grass with uneven height
on the ground might give inconsistent planar features.
And lastly, since LOAM focuses solely on odometry esti-
mation, no loop closure or saving built map functionality
is implemented. This prevents an agricultural robot from
operating efficiently since it needs to rebuild a map of a
large scale environment every time it is turned on. The
work in Shan and Englot (2018) is the most similar to
ours, however, like the original LOAM, the authors focus
on odometry estimation only.

We are inspired by an NDT-based approach for localiza-
tion in Sakai et al. (2017). However, the authors in Sakai
et al. (2017) use a 2D-3D matching while we directly
perform a 3D-3D matching. We argue that for agricul-
tural environments, where features are sparse, the use of
2D LiDAR would severely limit the matching process for
localization. Hence, we prefer a 3D-3D matching method.

3. SYSTEM OVERVIEW
3.1 Hardware system overview
The robotic system used in this work is an agricultural

mobile platform Thorvald II Grimstad and From (2017).
The robot is four wheel drive with a modular design.

L http://www.cvlibs.net/datasets/kitti/eval_odometry.php

The robot is equipped with a 3D LiDAR Velodyne VLP-16
and a commercial grade IMU Xsens MTi-30. The complete
hardware system is shown in Fig.1b.

3.2 Software system overview

The 3D mapping process is divided into three steps. First,
incoming LiDAR measurement is preprocessed to separate
a set of ground points from non-ground points. The set of
non-ground points is further segmented into different clus-
ters, each cluster containing points from one single object.
Both set of ground points and object clusters are used
for extracting edge and planar features. Second, extracted
features are then used to match and estimate pose between
consecutive LiDAR scans at scan rate. Pose estimations
are further refined at a lower rate by registering those
features to a global map. Finally, both pose estimations
are fused to give the final pose estimation. Loop closure
detection is also executed to guarantee a consistent global
map. When the mapping process is done, the final global
map is saved for later use.

For localization in a pre-built 3D map, we iteratively
perform 3D-3D scan matching between LiDAR scan and
the 3D map using the NDT representation of the map.
Details of mapping and localizing procedure are further
discussed in the next section.

4. 3D LIDAR MAPPING
4.1 Data Preprocessing

The original LOAM method by Zhang and Singh (2014,
2017) works well in indoor environments. The authors also
confirmed that feature matching is less reliable in outdoor
environments due to worse feature extraction in Zhang and
Singh (2017). We adopt the approach in Shan and Englot
(2018); Bogoslavskyi and Stachniss (2017) to preprocess
the raw point cloud data before extracting its features.
In particular, the ground points are first removed from
the point cloud and the remaining points are segmented
into clusters where each cluster contains points of one
object. The whole segmentation process is based on the
projected range image from the raw 3D point cloud for
fast performance. We notice that Shan and Englot (2018)
employs the ground removal strategy from Himmelsbach
et al. (2010) and require a heuristic predefined number of
ground scans to perform ground detection. We find that
the ground removal method by Bogoslavskyi and Stachniss
(2017) is more robust and implement this approach.

Let Py, kK € ZT be set of point cloud at measurement k.
After preprocessing, a set of ground points G and non-
ground points Q. (Gg,Qr C Py) are obtained for feature
extraction. Notice that, Gy, @ also contain labels for their
points, i.e, ground label for ground points and unique
label for each cluster and its points. We also eliminate
clusters containing less than forty points. The idea of
separating and labelling points is to further improve the
feature matching process by matching only points with
corresponding labels. For example, ground points are never
used to match with edge features, which most likely come
from non-ground points.
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(a) Simulated robot

Fig. 1. Hardware system overview.

(b) Real robot
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Fig. 2. Block diagram of map building.
4.2 Odometry Estimation and Mapping

The LiDAR odometry estimation process is executed in
the following order.

First, we extract features from the currently received
LiDAR scan Pj. Following Zhang and Singh (2017), we
also use a threshold to identify edge and planar features.
However, to avoid iterating through 3D points, we perform
this process using the projected range image as in Shan
and Englot (2018); Bogoslavskyi and Stachniss (2017). Let
S be the set of all points p; on the same row of the range
image of Pi. The roughness ¢ of p; is evaluated in Eq.1,
where ||-|| is the Euclidean distance and |-| is the number
of points:

HZjES,j;éi(rj - ri) ’ (1)
[S] - [l

The point p; is classified as edge feature if its roughness
c score is greater than a threshold, or else it is considered
as planar feature. Let &, be the sets of all extracted
edge and planar features, respectively. Zhang and Singh
(2017) performs several condition checks to reject outliers
feature points for scan matching. In contrast, by leveraging
the label associated with each point, we still can ensure
reliable scan matching result between scan Py and Pp_,
as follows. For each type of extracted features, we select a
small subset of edge features Ey, Ey, C £ with maximum c
score a small subset of planar features Hy, Hy C Hy with
minimum c¢ score. Then for finding correspondences, we
only match points from Fj with points of the same label
from €, and similarly for Hy and Hjy_1.

Second, after finding the correspondences of the feature
points, the distance between a point in the k** scan and

T

its correspondence is used to estimate the LiDAR motion,
denoted as

Xk :[Ra T]

Tk :[tﬂfat@ﬂtZ]T (2)

Ry, =[roll, pitch, yaw]"
where T; and Ry is translational and rotational part,
respectively. Stacking all the equations describe the ge-
ometric relationship between an edge points p; and its
corresponding edge line, we have:

fe(xp,i) =de,i € & (3)
Similarly, we can obtain another set of equations for planar
points and their corresponding planar patches:

fac(Xp,i) = dac,i € Hy, (4)
The detail derivation of dg, dg¢ is exactly as in Zhang and
Singh (2017) and omitted here for brevity. While in Zhang
and Singh (2017), the authors combine fe(xx,;), foc(Xk,:)
into one system of non linear equations and apply the
Lavenberg-Marquardt (LM) method to solve it, we follow
the approach in Shan and Englot (2018) to obtain the mo-
tion estimation in a more efficient way. We first solve Eq.4
using the same LM method. Notice that Eq.4 estimates
transformation between planar patches, the estimation of
roll, pitch angles and translation in z direction is more
accurately estimated than other components. We then use
the three components as constraints to solve Eq.3. Again,
for edge lines in Eq.3, translation in z,y and yaw angles
are estimated more robustly and we selectively choose
these components. Finally, we fuse these six components
together to achieve the final 6-DOF pose estimation.

Let Gr_1 be the set of point clouds in the global map
accumulated up to the LiDAR (k — 1) scan . We im-
plement the similar method in Zhang and Singh (2017)
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to match the points in &y, Hy to Gip_1 to further refine
the pose estimation. Readers are referred to Zhang and
Singh (2017) for the details. We notice the difference here
is that we explicitly aim for a consistent and reusable large-
scale map, not just accurate odometry estimation. Hence,
we implement a pose-graph optimization with loop closure
detection in Dellaert and Kaess (2017); Kaess et al. (2012)
to obtain the fine map. Specifically, the pose obtained in
the odometry estimation step is considered a node in the
graph. A loop is detected by matching between &, Hy
and &j_1, Hi_1. If a match is found, it is added as a new
constraint to the graph. The graph is efficiently updated
using iISAM2 library in Kaess et al. (2012).

5. LOCALIZATION IN A PRIOR 3D MAP

Given a 3D LiDAR map built in the previous section, the
robot can estimate its pose as the sensor ego-motion. We
adopt an NDT-based scan matching for localization similar
to Sakai et al. (2017). In comparison to the ICP method,
3D NDT scan matching is faster and at least as accurate
as the state-of-the-art ICP method Stoyanov et al. (2012).
Instead of performing heavy computation scan matching
by iterating through every point, the robot only needs to
compare between the much smaller estimated Gaussian
components, which represent the map and the received
LiDAR scans. In addition, the robot might experience
abrupt changes on uneven terrain, which in turn causes
a large displacement between consecutive scans.

Lidar
" EKF !
A4 : :
3DMap —> NDT . »! Correction ——»| Pose
H : estimation
i
IMU > Prediction | !

Fig. 3. Block diagram of localization system.

Let x; = [ps,qs, vi, bY]T be the state vector at time ¢
that we need to estimate, where p; is the position, q;
is the rotation vector in quaternion representation, v; is
the velocity and by is a constant bias for raw gyroscope
measurements @; from an IMU, that is rigidly attached to
the LiDAR sensor frame. Since the robot normally runs at
low speed, we can assume a constant translational velocity
for the motion model. Employing a standard Extended
Kalman filter, the prediction step is defined as follows:

x¢ =[Pr—1 + Vi1 - 0t, d—1 - 0, vi—1, b5 ]
5t . St . ot
6qt :[5wt s wa, Ewt N 1] (5)

Wi :d)t — b:)—l
where dt is a time step, dq; is the rotation during 6t with
the bias-compensated angular velocity w;. The predicted
pose x;,q; are used as initial guess for the NDT process
to match the observed point cloud to the global map. The
correction step then uses the NDT estimation result to
correct the final state estimation.

6. EXPERIMENTS

We validate our proposed system on both simulated and
real datasets. Here, we provide quantitative evaluations on:
position drift while mapping, relocalization on previously
built 3D LiDAR map and map quality comparison.

60

20 10 60 80 100 120 140
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Fig. 4. Position drift when mapping in simulation.
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Fig. 5. Position drift when mapping in real scene.

We first validate the proposed system using the simulation
built on gazebo? for our project®. The simulated scene
consists of two polytunnels and food processing storage.
The simulated Thorvald robot is configured to physically
match the real one. It is equipped with a simulated
Velodyne VLP-164 and a 2D LiDAR Hokuyo. Currently,
2D LiDAR with gmapping SLAM?® is used for building
map. The de-facto AMCL® is used for localization in
a pre-built 2D map. Hence, we directly compare the
localization results from two different sensor modalities
and show that we can achieve comparable or better results.
The ground truth is taken from gazebo.

In the simulation test, the robot is first manually driven
around the scene while both gmapping and the proposed
3D LiDAR mapping are running to build the 2D and
3D map of the scene, respectively. The built maps are
then saved for localization test. The 2D maps are omitted
due to space constraint. After building maps, the robot
is again driven manually through the scene using the
previously built maps for localization. Both AMCL and
the proposed localization method are running to estimate
the robot pose. Both estimation results are recorded and
analyzed following Zhang and Scaramuzza (2018). Position
drift when mapping with LiDAR is shown in Fig.4. The
relative errors in translation and rotation (yaw) are shown
in Fig.6a,6b, respectively. The relative errors also show a
consistently low median translational error of the proposed
method (less than 0.5%). For relative rotation (yaw)
errors, the proposed method shows a smaller median error
in comparison with amcl for long trajectories.

We conduct another test with a real dataset. The robot
Fig.1b) is driven manually around our campus. Starting

http://gazebosim.org/
https://rasberryproject.com/
https://github.com/LCAS /velodyne_simulator
http://wiki.ros.org/gmapping
http://wiki.ros.org/amcl
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Fig. 6. Quantitative localization comparison between amcl and proposed method in simulation. The ground truth is

taken from gazebo.
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Fig. 7. Quantitative localization comparison of proposed method with a real dataset.

(a) Built map by LOAM

(b) Built map by our method

Fig. 8. Qualitative comparison of built maps. Color indicates intensities for viewing. Notice the difference of the building

walls. Our method produces sharper map than LOAM’

in front of our lab, which is served as a storage, the robot
moves to our mockup polytunnel and back. The total
trajectory is 500 meters. The ground truth in this test
is obtained via a RTK-GNSS Septentrio AsteRx4 system.
Notice that, we solely use the RTK-GNSS for ground truth
comparison. To further challenge the proposed localization
method, only half of the dataset is used for mapping.
For localization in a built 3D map, the robot uses the
whole dataset, in which half of the dataset contains LIDAR
scans from the opposite moving direction when mapping.
This mimics a scenario where we want to perform a
fast mapping process and the robot can reliably use the
built map for localization. We also achieve a low drift
in position as shown in Fig.5. The relative pose error
is shown in Fig.7. The robot achieves a small median

s. Best viewed in color.

translation error (< 2%) for the whole trajectory. However,
we encounter accumulating drift in rotation estimation,
which is contributed by our assumption of constant bias
of angular velocity and the inconsistency of the EKF.

Finally, we compare the quality of the built map between
our proposed method and the original LOAM. We follow
Droeschel et al. (2014) to calculate the mean map entropy
(MME) from the mapped points P = {p1,...,pn}. The
mean map entropy H(P) is used as the crispness/sharp-
ness metric of the map. A map with lower entropy has
higher quality. The mean map entropy is defined in Eq.6.
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1
h(p) :§1H|27T€E(pk)|

HP) =23 him)
k=1

where h(py) is the entropy of the mapped point pg, X(pk)
is the sample covariance of the mapped point p; in a local
radius r = 0.3m around py, and H(P) is averaged over all
n mapped points.

The 3D maps built by LOAM and our method have
the values of entropy: -0.19 and -0.22, respectively. The
maps size is 27.7 MB and 8.2 MB by LOAM and ours,
respectively. Our method produces a sharper map with
less memory consumption for storage.

(6)

We illustrate the differences in quality of the built maps
by two methods in Fig.8. LOAM retains more points in its
map but the quality of the map is lower than ours.

The video of experiments is available online:
https://youtu.be/05sTYF8AKaY

7. CONCLUSIONS

In this work, we propose a complete online 3D mapping
and localization system for intelligent agricultural robots.
Existing methods, such as the state-of-the-art LOAM,
primarily focus on odometry estimation in urban scenarios.
We provide an additional localization method to make
use of an accurate 3D built map, which is vital for an
agricultural robot to work on a large scale farm without
remapping before operating. The proposed system is tested
using simulated and real datasets.

We notice, that by applying segmentation on input point
clouds, we achieve more robust and better point cloud
registration. Hence, future work involves further exploita-
tion of point cloud segmentation to deal with dynamic
environment. In addition, we plan to improve the localiza-
tion system to further reduce drifts in rotation estimation
caused by the inconsistency of the EKF.
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