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A B S T R A C T

In this paper, we present an overview of several challenges in arable farming that are well suited for research
by the control engineering society. We discuss the global needs that these challenges are related to as well as
the relation of these challenges to future applications of arable farming. For each of these opportunities we
provide several concrete and detailed research questions. Particular attention is paid to the management of
resources and sensors in farms. The objective of writing this paper is to further entice control engineers into
the domains of agronomy and agricultural technology.
. Introduction

.1. Global challenges

The global population is expected to grow by approximately one
hird between 2009 and 2050, which is an increase of approximately
.3 billion people (FAO, 2009). In order to sustain this growth, the
ood production has to increase as well. Combined with the trend of
rbanisation (UN, 2018), it becomes increasingly more important to
roduce more food using the available farmland.

The current resource-intensive farming paradigms have shown not
o be scalable due to their enormous environmental impacts such as
eforestation, water scarcity, and green house gas emissions (FAO,
017). As such, it is an imperative challenge to increase the crop
ield per available area, whilst significantly reducing the usage of
esources such as water, pesticides, and herbicides in order to minimise
he environmental impact and increase the sustainability of the food
roduction chain.

Due to its global scale, developing and developed countries alike
ill face the challenges of revolutionising the paradigms of agricul-

ure. In 2015, 17 global sustainability goals for 2030 were identified
n The General Assembly of the United Nations (2015). Agriculture
lays a prominent role in many of these goals. The clearest presence
f agriculture is in Goal 2: ‘‘End hunger, achieve food security and
mproved nutrition and promote sustainable agriculture’’ (The General
ssembly of the United Nations, 2015, p. 14). However, the impor-

ance of agriculture can also be seen in Goals 6, 12, 13, 14, and
5 (sustainable management of water, sustainable consumption and
roduction patterns, combat climate change, sustainable use of oceans,
nd protection of ecosystems, respectively).
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1.2. Goal and scope

In the present paper we will discuss the challenges within arable
farming to which the control engineering society could contribute sig-
nificantly. In particular, the main focus of this paper is automated deci-
sion making in arable farming. This includes management of resources
such as water, herbicides and pesticides, as well as the management of
sensors. In this work we will highlight several of such challenges with
the goal of (further) enticing control engineers to this important and
societally relevant line of research.

It is noteworthy to mention that there is a vast amount of literature
on control of crops in greenhouses (as well as greenhouse horticulture).
Greenhouses are evidently more ‘controlled’ environments and ‘less
harsh’ than fields of crops, which has led to control methods that are
not directly applicable to arable farming. On the actuation side, green-
houses are able to control humidity, carbon dioxide levels, temperature,
and irradiation. Irrigation can sometimes occur on an individual crop
level. Also the placement of sensors is more ubiquitous. This has led
to much interesting research and many successful instances of control
applications, see, e.g., Van Straten and Van Henten (2010), Van Straten
et al. (2010). Anyone interested in control for arable farming is advised
to study the applied control technologies in greenhouses as well.

Additionally, much research has been carried out on the topic of
machinery and robotics for arable farming, which is of interest as
well. However, in the present work the focus is on management and
allocation of machinery and robots. Methods of sensing, manipulation,
path planning, and motion control of such robots are left outside
the scope of this work (for a review, see, e.g., Bechar and Vigneault
(2016)).
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1.3. Outline of the paper

The remainder of this paper is structured as follows. In Section 2 we
provide a definition of Precision Agriculture (PA) and how it is related
to the global challenges mentioned above. In Section 3 we present our
main recommendations for research directions for the control scientists
and engineers interested in PA. Several advanced applications of these
research directions are presented in Section 4. Practical recommen-
dations and considerations for doing research in these directions are
presented in Section 5 and we end with conclusions in Section 6.

2. Precision agriculture objectives

There are numerous definitions of Precision Agriculture (PA) (see,
e.g., Jawad et al. (2017), McBratney et al. (2005), Pierce and Nowak
(1999)). In the present paper, we consider PA to be the type of agriculture
that aims to maximise the number of (correct) decisions per unit area of
land per unit time with associated net benefit (following McBratney et al.
(2005)). Led by the global challenges mentioned in Section 1.1, we
define the global goal of PA for the purpose of the present paper to
be:

To help farmers across the world to increase the pro-
duction of high-nutritious foods at minimal environmental
impact through the use of technologies, in order to sustain
the food demand of humanity.

The technologies mentioned in the global goal above include ad-
vanced machinery, data-gathering and processing infrastructure, and
automated decision making schemes. In the present work we will
mostly focus on the data-gathering and automated decision making,
as these are closest to the control community. However, these are
evidently strongly related to the machinery. There are many different
kinds of machines and robots for arable farming on both the sensing
and actuation side (Bechar & Vigneault, 2016; Hajjaj & Sahari, 2016),
such as automated harvesting robots (Bac et al., 2014; Zhao et al.,
2016), unmanned aerial vehicles (UAVs) for remote sensing (Lottes et al.,
2017; Mulla, 2013; Zhang & Kovacs, 2012), and machines/robots for
application of resources such as fertiliser, pesticides, and water (Bechar
& Vigneault, 2016). Closely related to the robots are the advanced
machines that farmers operate. Both agricultural robots and machines
are an integral part of farm-wide automated crop growth management.

In the remainder of this section we will elaborate further on sev-
eral aspects of the PA goal, including minimal resource usage and
environmental impact (Section 2.1), and availability of technology
(Section 2.2).

2.1. Minimal resource usage and environmental impact

The four main resources used in arable farming are water, fertiliser,
pesticides, and fuel for machinery. In the remainder of this section we
will discuss these in more detail.

2.1.1. Water
Currently, there are several countries facing a freshwater crisis.

Studies show that many more cities and countries across the planet
will face a freshwater crisis if water is kept being used at the cur-
rent rate (FAO, 2011). Of all the water withdrawn for human use,
70% is used for irrigation (FAO, 2011). This is mainly due to the
vast scale at which crops are produced. For example, in order to
produce a kilogram of rice, over 1600 litres of freshwater is needed
and one kilogram of potatoes needs approximately 287 litres of fresh-
water (Mekonnen & Hoekstra, 2010a). Livestock has an even worse
‘efficiency’ in terms of produced mass and nutritious value relative to
the water needed (Mekonnen & Hoekstra, 2010b). This is partly due
to the fact that animals are higher in the foodchain and thus require
48

a large amount of crops, which in turn require a lot of water. Hence,
reducing the water usage in arable farming could have a huge impact
on the availability of freshwater throughout the world.

The importance of smart irrigation systems is explicitly stated
in FAO (2011, p. 8): ‘‘Most future growth in crop production in devel-
oping countries is likely to come from intensification, with irrigation
playing an increasingly strategic role through improved water services,
water-use efficiency improvements, yield growth and higher cropping
intensities’’.

2.1.2. Fertilisers
The main components of fertilisers are nitrogen (N), phosphorus

(P), and potassium (K) (often abbreviated as NPK). Remaining nutrients
include calcium, magnesium, and sulphur (Kiiski et al., 2016). Insuffi-
cient application of nitrogen, the primary component of fertiliser, can
result in low crop yields and insufficient food production, whereas an
excess can lead to serious environmental harm (Hasler et al., 2015;
Stevens, 2019). These negative effects include increased greenhouse
gas emissions, poor air quality and water pollution (Stevens, 2019). It
is predicted in Springmann et al. (2018) that in the absence of tech-
nological changes and mitigation measures, the environmental effects
of excessive use of nitrogen and potassium in agriculture will increase
between 2010 and 2050 by 50% to 90% and reach dangerous levels.
In most countries there are strict regulations as to how much nitrogen,
phosphorus and potassium can be applied.

Timing of fertilisation is delicate. If fertiliser is applied too late
then the crop will have a reduced growth. On the other hand, if it is
applied too early, then the nutrients may be lost in the soil. This makes
it an interesting case study for control engineering, especially in the
case where there are many (sub)fields requiring large-scale control and
optimisation, see, e.g., Cobbenhagen et al. (2018).

2.1.3. Pesticides
The objective of using pesticides is to protect crops from pathogens

and parasites. Pesticides are, by definition, toxic and bio-active sub-
stances (Imfeld & Vuilleumier, 2012). As a result, the use of pesticides
can affect the health of the crops, soil, and humans (Carpy et al., 2000;
Imfeld & Vuilleumier, 2012; Maroni et al., 1999).

Limiting the usage of pesticides is not only desired due to its nega-
tive side effects, it is also a cost saver for the farmer. Hence, the careful
application of pesticides is an interesting topic for research in control
engineering. It could be interesting to see what the optimal policy is
under risk constraints. In Section 4.1 we will focus on intercropping, a
technique that has the potential to reduce or even eliminate the use of
pesticides.

2.1.4. Fuel
One of the resources that should not be forgotten is the fuel used by

the farming machinery. In fact, the logistics within the entire foodchain
‘from farm to plate’ is an interesting topic of research, but is not
considered here (refer to, e.g., Wakeland et al. (2012)). In terms of
local usage of farming machinery, the minimisation of fuel results in
obvious reductions in greenhouse gas emissions and less expenses for
the farmer (see, e.g., Dalgaard et al. (2001) for a study on the impact
of fossil fuel use).

2.2. Availability of technology

Farming is a business. Income is generated by the sale of high quan-
tity and high quality foods and the expenses are mainly governed by
resource usage and labour. Advanced PA technologies can potentially
have high starting costs. One might argue that these start-up costs may
hold back the implementation of the technologies at smaller farms.
However, investing in PA technologies becomes a necessity if smaller
farms want to compete with larger farms that have more capital and

invest in these technologies.
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It is thus of importance to keep in mind how advanced technologies
can be used in less technologically developed areas or by smaller
farms. When discussing new technologies in farming it is easy to forget
that it is worthwhile to investigate ‘lower-tech’ solutions. For example,
it can be argued that with an increase in advanced decision support
systems (DSS), that there is also a demand for DSS that require limited
computation power and sensing capabilities. The latter system helps
farmers that do not have access to state-of-the-art sensors to make
better informed decisions. Instead of allocation of automatic sensors
such as UAVs, such a DSS would advise the farmer where and what
to measure (even visual/manual inspection) such that the DSS obtains
better information on the current state of the field and hence can make
better decisions. Due to the reduction in costs of GPS devices and
wireless technologies, it is possible to create ‘lower-tech’ solutions for
information gathering in PA, see, e.g., Maia et al. (2017), Wachowiak
et al. (2017) for examples.

3. Model-based crop growth management

3.1. Why model-based crop growth management?

A fundamental question in PA is what the level of ‘precision’ should
be. Consider two extreme scenarios, the first of which is where an entire
field is treated homogeneously, the second scenario is where each plant
in the field is individually monitored and controlled. Evidently, the first
scenario is suboptimal: there are variations over the field and not all
crops and soils in a field have the same properties nor do the crops have
to ‘behave’ the same. However, it is a cheap/easy option in terms of
monitoring and caring. The second scenario may produce more crops as
each plant is treated individually and therefore its needs can be exactly
met. The downside of this scenario is that it is rather difficult and
expensive to monitor each plant individually and (currently) the costs
of this approach are larger than the potential profits. It is evident that
these two extreme scenarios are suboptimal. This raises the question
where the optimal level of precision is between these extremes, that is,
the level at which the costs of managing and monitoring are balanced
with the profits due to the level of attention given to each crop.

The trend in developments in PA is clearly towards operating at
a higher resolution, which can, for instance, be seen from the devel-
opments in and usages of sensors and actuators (Reyns et al., 2002).
However, we hypothesise that, in order to push for an increased resolution
in PA, we require a scalable ‘software approach’ in order to go beyond
the hardware limitations of sensors and actuators. This hypothesis is the
main motivation for the importance of doing model-based crop growth
management. The main idea of which is to create a ‘digital twin’ of the
crops (i.e., crops are monitored by monitoring a simulation model of
the crop growth), which uses sensor inputs of the crop or nearby crops
in order to predict the state of the crop. Additionally, this model of
the crop is used to compute the best actions for the crop (e.g., amount
of irrigation or fertiliser). The addition of a model-based crop growth
management to the sensors and actuators increases the resolution of
PA.

The hypothesis above is central to this paper and due to the im-
portance of a model-based control approach, several interesting and
important opportunities for the systems and control community in PA
can be identified. In the remainder of this section we elaborate on
three important research directions for the interested control engineer:
crop growth models for control, model-based control of crop growth,
and estimation of state variables of crops and fields. These subjects all
contribute to the purpose of farm-wide on-line automated decision making
and/or providing decision support to the farmer.

We refer to the seminal work McBratney et al. (2005) in which
general research lines of PA have been identified. These research lines
form the starting point of our work; we will specify and detail them
for the systems and control engineering community and expand upon
49

them.
3.2. Crop growth modelling for control

There exists a plethora of models that predict the growth of crops.
See, e.g., Brisson et al. (2003), de Wit et al. (2019), Shibu et al. (2010),
Steduto et al. (2009), and Bouman et al. (1996) and the references
therein. Most of them are well-validated and proved to be able to
predict the crop growth. These models have traditionally been created
by biologists, ecologists, and agronomists. However, these models typ-
ically do not lend them to be directly used by ‘standard techniques’
from control engineering in order to design controllers or state esti-
mators (Carson et al., 2006). In many research areas within control
engineering, it is assumed that the dynamical model of the system to be
controlled is given by a proper mathematical description, for instance,
in terms of a set of differential or difference equations. These can
be linear or non-linear, and they may include partial derivatives. The
aforementioned crop growth models generally are not in such a form.
They are mostly in the form of executable simulation models, consisting
of many lines of code. Although many models do have differential and
difference equations at their core, much of the reasonable performance
in prediction comes from added relations. Such relations take the form
of, e.g., ‘if-else-statements’ and look-up tables for empirical data.

In order to bridge the gap between these crop growth models and
the control engineering domain, we identify the following directions of
research:

(1) Adaptation of control methods such that the existing crop growth
simulation models can be used directly.

(2) Creation of novel crop growth models that rely on the domain
knowledge of the experts, but with the intent to have both
appropriate prediction accuracy and a mathematical descrip-
tion of reasonable complexity that lends itself to be used in
‘conventional’ control engineering methods.

(3) Identification of models based on data and related data-driven
control methods.

The difference between direction (3) and the other two is that (3)
allows for the use of black-box models. In this work we focus on the first
two of these directions. The interested reader is referred to, e.g., Beza
et al. (2017) for a recent review on using data in modelling the yield
gap. It should be mentioned that it may be interesting to explore the use
of reinforcement learning if only simulation models are available (see,
e.g., Bu and Wang (2019), Jiang et al. (2018), Sun et al. (2017) for
recent examples). However, such control policies have the downside
that they lose much ‘explainability’ of the optimal actions, which is
important for practical implementation. This will be further discussed
in Sections 3.3 and 5.2 . Note that data-driven methods combined
with expert domain knowledge (i.e., grey-box modelling) have high
potential. This allows data to be used in modelling, while maintaining
a high level of explainability and generality.

Aside from the fact that it may be interesting to employ the models
in control engineering methods, there are additional benefits in creating
models as described in (2). Firstly, by explicitly stating the workings
of such models they become more accessible to the users. It allows
for scientists to share and improve them and apply them to different
locations, crops and weather patterns. Furthermore such models allow
governmental agencies, non-governmental organisations (NGO) and
companies to create their own decision support systems.

3.3. Difficulties in crop growth modelling

In many situations, control engineers are designing controllers for
a system that they can redesign. For instance, in electro-mechanical
devices, one may be able to change the mechanical or electrical design
in order to obtain a system that is ‘easier’ to model and control
(e.g., reducing the extent of non-linear dynamics by more expensive
or better designed hardware). In arable farming, we are dealing with

a biological system where such modifications are difficult. Moving
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crops from arable lands into greenhouses is the primary example of
how one might control part of the dynamics. For instance, farmlands
located on an uneven terrain may see a movement of soil water due to
gravity. When crops are placed in a greenhouse, they are most of the
time placed in containers with soil, which can be set level and hence
reducing (or even eliminating) such effects. In mechanical systems, a
first approximation of the dynamics can often be done by an application
of Newton’s second law of motion and constitutive relations such as
Hooke’s law. It is then relatively easy to obtain a simple, yet descriptive,
dynamical model. Further predictive performance is then obtained by
adding more relations and including non-linear effects. The same can
be said of electrical systems and thus also electro-mechanical systems.
The basis of modelling crop growth for arable farming is ‘storage’
(integrator) of sugars, water, and biomass. Hence, it often exhibits first-
order behaviour. The difference with the electro-mechanical situation
discussed above is that most of the predictive performance of the crop
growth models comes from the ‘non-linear inputs’. These non-linear
inputs in crop growth modelling are not as well-known and often
require a high degree of non-linearity and many (unknown) parameters.
Recently, a successful instance of this approach was shown in Pelak
et al. (2017), where a crop growth model with four first-order non-
linear differential equations (the states are canopy cover, relative soil
moisture, total nitrogen content in the soil, and the crop biomass) was
demonstrated.

The typical time scale for performing actions in farming is minutes
to hours, whereas the time scale of crop growth dynamics is typi-
cally in the order of days. On top of that, the objective of decision
making is often related to a terminal reward as harvesting is done
at the end of the growing season, which has a duration of multiple
months. In greenhouse management, the short-term decision making
(temperature, ventilation, etc.) is often made by a closed-loop decision
making system, whereas the long-term decisions are made by the
farmer/grower (Van Straten et al., 2000). Increasingly more novel
research is done towards extending the short-term decision making over
increasingly longer time scales. This raises the question of how these
facts can be leveraged to improve arable farming.

Any practically useful crop growth model should be able to handle
the different circumstances between farms. For example, a crop growth
model should be able to take into account the local soil parameters, and
climate and weather patterns. Not for the purpose of creating a ‘crop
growth model for all’, rather due to the fact that designing a model
for every farm and crop cultivar separately is not a sustainable option.
It is therefore of interest that crop growth models for control can be
calibrated with relative ease and have parameters that are ‘explainable’
to the user (i.e., no black-box parameters that require ‘tweaking’).
Another reason why it is important to have explainable parameters in
crop growth models is that models are continuously adapted due to
the effects of climate change (Asseng et al., 2015) and responses at
the farm-level to climate change are required (Reidsma et al., 2010).
Hence, in order to be able to adapt models even slightly, a high degree
of ‘explainability’ is needed.

3.4. Model-based control

Model-based control in PA is concerned with computing the optimal
allocation of resources such as water, fertiliser, and pesticides, to fields
using models to predict the future crop growth. The objective by which
the ‘best’ actions are judged is a combination of financial profit, risk
aversion, and environmental impact. The current state-of-the-art for
many arable farmers that make use of such models, is to run (Monte
Carlo) simulations where the actions and weather patterns are varied.
Based on the outcomes of these simulations, a reasonable set of actions
is selected. See, e.g., Bergez et al. (2010) for an example application.

In recent years, there have been several endeavours into optimal
control methods that explicitly use crop growth models in order to com-
pute the ‘optimal’ amount of water to irrigate crops, see, e.g., Cobben-
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hagen et al. (2018), Kalboussi et al. (2019) and for a model predictive
control setting, see, e.g., Lozoya et al. (2014), Saleem et al. (2013),
Schoonen et al. (2019). For illustrative purposes, we have included an
example of the latter in the Appendix, which is based on previous
work (Schoonen et al., 2019) by some of the authors of the present
paper. On a larger scale, the control of irrigation networks between
farms has been extensively studied in, e.g., Cantoni et al. (2007),
Mareels et al. (2005), Negenborn et al. (2009). However, due to the
large scale of irrigation networks, these controllers do not make use of
crop growth models.

The primary research directions we identify in model-based control
for farm management are:

(1) The design of control methods to be used with (existing) crop
growth models.

(2) The incorporation of the allocation of water, fertiliser, and pes-
ticides into a single framework.

(3) The scalability of control methods to large-scale systems.
(4) How to deal with or exploit the time-scale separation between

the crop/field dynamics and control actions (see Section 3.3) in
control schemes.

Related to these practical primary research directions, we identify
several questions that may find a partial answer to the directions
mentioned above. Firstly, the model-based approach may give answers
to the question of which level of granularity in both time and space
is optimal. The scalability of the control methods, item (3) in the
list above, is especially important if the granularity is high. Secondly,
it may increase our understanding of the interplay between when to
fertilise and when to irrigate. There is much biological and ecological
theory on how these factors influence each other and it is thus of
interest to investigate what an optimal control approach would provide
as the optimal pattern of applying fertiliser and irrigation.

3.5. State estimation and digital twins

The use of sensors in arable farming has drastically increased over
the past decades (Reyns et al., 2002) as well as research into vision-
based sensing (Chen et al., 2002). These systems can measure a wide
variety of properties of the crop and soil such as leaf area, soil water
content, and soil conductivity. Not all of these measurements are
properties that would typically be a state in a dynamical crop growth
model. It is the use of empirical correlations that are employed in order
to estimate the status of the crop using the measurements. For instance,
using hyperspectral imagery of the crops, one can compute the NDVI
(normalised difference vegetation index) from which approximations of
the ‘leaf area index’ and nitrogen content in the leafs can be obtained
(see, e.g., Carlson and Ripley (1997)). State observers could be used in
conjunction with on-line parameter updates, which enables the creation
of ‘digital twins’ of the crops and fields. This provides better insights
into what is happening on the fields and the importance of digital twins
was stated in our central hypothesis in Section 3.1.

The first research direction we identify from a control-theoretical
perspective is to analyse which measurements lead to observability
(or detectability) of the states of the crops and soils. Using the crop
growth models for control it could be possible to design observers. See,
e.g., Bono Rossello et al. (2019) for a recent example of using a simple
water/soil model in order to design observers to monitor the soil water
content.

Secondly, the design of state observers could lead to an increase
in understanding of where one wishes to sense. For instance, farmers
that have several UAVs would like to know when and where they
should fly them to collect measurements. At first glance, there are many
possibilities: to the field with highest uncertainty of crop states, to the
‘best’ fields that have the highest (potential) yield, the ‘worst’ fields,
and more. All these possibilities have their benefits and downsides, but
the question remains which is the best in the grander scheme of farm
management. Combined with a controller design, it may be possible to

device the optimal policy of allocation of sensing agents such as UAVs.
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3.6. Reduced-order crop models

Reduced order crop growth models are especially useful in the crop
growth management of large-scale farms. Consider the case where a
farmland is divided into hundreds or thousands of subfields. Using
reduced order crop growth models may then help to significantly
reduce the computation time, while still performing well in such a
large-scale setting.

If one were to obtain a crop growth model that lends itself to be used
to design controller and state estimators, a natural question would then
be whether the closed-loop system is of minimal order.1 If the controller
and sensors can achieve the same input–output behaviour with fewer
states, then the system model is not minimal. Even if the model is
minimal, it may be interesting to analyse which of the states are the
most ‘important’ in the model and subsequently obtain a reduced order
model.

Such an approach has the potential to objectively quantify the
relative importance of sensors and resource inputs to the overall crop
management. This would provide an interesting new perspective on the
role of decisions and measurements in PA.

4. Advanced applications

Building upon the essentials of model-based control and estimation
in arable farming as discussed in Section 3.4, we present three advanced
applications in this section. These applications are intercropping, multi-
agent systems, and vertical farming.

4.1. Intercropping: Enabling natural symbiosis

When discussing arable farming, chances are that large swathes
of land with a single crop come to mind. Naturally, crops would not
grow as such large mono-cultures. There is a natural symbiosis between
crops, other plants, bacteria, and animals that enable an exchange of
protection and nutrition. Intercropping is the practice of cultivating dif-
ferent crops in close proximity with the intentional purpose to benefit
from a natural symbiosis. Intercropping is one of the core applications
within the science of agroecology (Wojtkowski, 2019).

Initially, humankind’s first attempt at farming had different types of
crops close together. As human societies grew larger, managing of such
multi-crop fields became too difficult in order to satisfy the increasing
demand of food as settlements grew in population. The difficulty in
managing intercropped fields arises due to the fact that if many crops
grow close to one another, it is more difficult to seed, monitor and
harvest. Humanity therefore shifted towards monoculture farming over
time as it was more efficient due to the available specialised tools and
animal labour (later machine power). Yet, intercropping is still widely
used by farmers with small lands in the tropics (Boudreau, 2013), but
it currently is not manageable for large-scale farms.

There are several advantages to intercropping. Firstly, by placing
different types of crops close to one another, crops may benefit from
natural protection from diseases (Boudreau, 2013). This reduces the
need of pesticides and herbicides. Secondly, intercropping stimulates
an increase in biodiversity in the soil and of insects. This can lead to
an increase of nutrients for the crops and a healthier soil. Thirdly, the
density of crops in a field can be higher in intercropping, which may
lead to a higher yield. An example is placing a crop with deep roots
near a crop with a shallow root system.

Systematic research on intercropping started many years ago, see,
e.g., the seminal work by Vandermeer (1989). However, it has even
recently been argued that there still is a need of a systematic theory be-
hind agroecology and intercropping (Wojtkowski, 2019). The interplay

1 Here we use the terminology for linear state–space systems for didactic
urposes. Extensions to other types of systems are implied.
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between crops, soils, and pests is delicate and not straightforward. For
instance, intercropping in itself does not reduce pest damage (Smith &
McSorley, 2000, p. 154). It is evident that control theory and especially
game theory may provide interesting new insights into the dynamics
of intercropping (Wojtkowski, 2019, p. 187). Yet, surprisingly little
research has been done within these domains (to the best of our knowl-
edge). An exception can be found in the domain of statistics (Federer,
1999; Lupatini et al., 2014). It is a great and highly relevant challenge
for the domain of systems and control engineering to develop such
theories for agroecology.

The second challenge is of a more applied nature. Due to the fact
that intercropped fields do not necessarily follow the ‘row orientation’
that conventional mono-cropped fields have, a new kind of machinery
is required to seed, monitor, maintain, and harvest. We identify the
computation of optimal patterns for such new machinery as the second
challenge for control engineering within agroecology. It should be men-
tioned that there are forms of intercropping that follow the traditional
‘row orientation’, which is known as ‘strip cropping’ (Francis et al.,
1986; Mousavi & Eskandari, 2011). In strip cropping, each row has the
same type of crop, but adjacent rows may have different crops. A recent
meta-analysis (Yu et al., 2015) has shown that intercropping can, on
average, result in a 22% increase of crops relative to mono-cropping.
Fig. 1 illustrates the differences between the various configurations of
crop orientations.

There is an even more advanced form of intercropping, namely
agroforestry (Sanchez, 1995; Torralba et al., 2016). It takes ecology ‘into
a third dimension’ and it is the science of cultivation crops in combi-
nation with trees. As in ecology, the aim is to improve productivity of
the farm through symbiosis of the crops and trees. Evidently, this can
increase the complexity of decision making and hence it is of interest
to study it from the systems and control perspective.

4.2. Soil compaction and the disturbance of the top soil: Multi-agent systems
and remote sensing

By driving large machines over the soil, the biotope of the top-soil
is heavily disturbed and compacted, which can have negative impacts
on the soil health and the crop yield (Lipiec & Hatano, 2003). In order
to manipulate the crop by the least amount and minimally disturb the
biotope of the top-soil, the trend to make use of both lighter and smaller
tractors, and remote sensing is evident. Application of nutrients and
other resources is therefore challenging.

Smaller resource-delivering vehicles (both ground or aerial) evi-
dently have a smaller capacity. As discussed earlier, by careful monitor-
ing one can reduce the amount of resources that need to be delivered
to the crops. However, there are still considerable amounts that need to
be delivered. In order to lessen the disturbance of the top soil, there are
desires and trends to reduce the mass (or size) of a resource delivering
agent by orders of magnitudes 10 to 100, whereas the decrease in
resource delivered by advanced optimisation schemes will most likely
be in the order of 1.2 to 2. This implies that many resource delivering
agents are required in order to fulfil the resource demands for crop pro-
duction. This warrants a careful deployment and allocation of agents.
Hence, it is necessary to develop multi-agent optimisation tools. An
example of a multi-agent resource allocation scheme for irrigation can
be found in Schoonen et al. (2019).

4.3. Vertical farming

In 2018, approximately 55% of the world population resided in
urban areas. That number is expected to increase to 69% by 2050 (UN,
2018). With this global increase of urbanisation, there is a rising
demand for locally grown food. Vertical farming is a way to incorporate
farming into cities. It is called ‘vertical’ due to the fact that such
farms take form of high-rise buildings where produce is grown on
each floor (Benke & Tomkins, 2017; Garg, 2014). It has been shown
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Fig. 1. Sketch of differences in configuration of crops on arable land: traditional monocropping (left), stripcropping (middle), and full intercropping (right). The different colours
represent different crops.
that it has the potential to be an economically viable way to produce
food with a small environmental footprint and area demand (Banerjee
& Adenaeuer, 2014; Benke & Tomkins, 2017; Kalantari et al., 2018).
Currently there are successfully operating vertical farms around the
world, see, e.g., Benke and Tomkins (2017), Kalantari et al. (2018)
for an overview. The most successfully grown crops in vertical farming
today are leafy greens (Sarkar & Majumder, 2015).

Part of the reason of the low environmental footprint is that vertical
farming requires less water than traditional farming as there is less
evaporation and water can be recycled more easily. Many of the vertical
farming operation make use of hydroponics, where the crops are placed
in nutrient-enriched water rather than soil. This eliminates the need for
fertiliser and pesticides (Benke & Tomkins, 2017). Since the farmlands
are stacked upon each other in vertical farming, not every floor can
obtain sunlight as well as in an ordinary greenhouse. Such artificial
lighting comes at an increase in investment costs and energy costs
which should, of course, be taken into account.

Vertical farming poses challenges for many disciplines of engineer-
ing. The challenge we identify for system and control engineering
is the automated management of crops in vertical farming. Just as
in traditional greenhouses, the environment is closed, which allows
for better monitoring and control of the crops. One might argue that
this is no longer arable farming and it is more related to growing
crops in greenhouses. The reason why we include vertical farming
in the present paper is that there is a need for arable crops to be
grown within the vertical farming environment. Hence, when designing
models, controllers, or estimators for arable farming, it is of interest to
consider how these would work in vertical farming in order to increase
the number of crops that can be grown in such environments.

5. Practical considerations

So far in this work we have discussed the challenges and opportu-
nities for control engineering within arable farming. In this section we
will provide several considerations and recommendations to take into
account when tackling the challenges discussed throughout this work.

5.1. Domain knowledge

The most important consideration is the involvement of domain
experts. As mentioned in Section 3.3, crop growth modelling is an
inter-disciplinary activity where researchers from disciplines such as
agronomy, biology, and ecology have done a tremendous amount of
work in order to better understand crop growth. Whether designing
a crop growth model for control or adapting an existing crop growth
model to be used in control, the domain knowledge is extensive and
must be consulted.
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5.2. User adoption

In any case of practical controller design, one must take the user into
consideration. This is definitely very much the case in arable farming.
The control actions are, in general, performed by the farmer as the
primary user. As mentioned, it may be the case in the future that
robots perform farm management with the human out of the control
loop, but this is currently not the case and will not be for the near
future. With automated decision making with humans in the loop, the
computed decisions and state estimations must be explainable to a
reasonable degree. The most prominent reason is that if the computed
decisions are not reasonable at first glance, then the user may not
execute them at all. Notice for instance, that the terminology within PA
for automated decision making algorithms is ‘decision support system’
(DSS): the farmer still makes the ultimate decision and is only advised
by the DSS.

We refer to Van Straten et al. (2000) for a survey done among
suppliers of control systems for greenhouses as well as users of the
control systems (i.e., farmers) on the requirements of control systems
for proper adoption. One of the questions that was often asked by
the farmers in this survey was whether the prediction models can be
trusted (Van Straten et al., 2000, p. 233). It is thus of key importance
that the crop growth models to be used in any control scheme should
have an explainable behaviour.

5.3. Degree of available equipment

Many novel robots, machinery, and sensors come to market every
year. It is tempting to design automated decision making systems that
use such hardware as there is obviously a market for such systems. As
mentioned in Section 2.2, it is also of importance to design advanced
decision making schemes that do not rely on such machinery. In the
design of control methods for arable farming, one must thus take in
mind which types of machinery and how much computing power will
be available to the farmer.

6. Conclusion

In this work we identified several research directions for control
engineering research within the domain of precision agriculture (PA)
for arable farming with the purpose of attracting control engineers and
researchers to the highly relevant and interesting application domain.

We presented an overview of the challenges that humanity faces
and how PA can help to tackle these challenges. For research in the
short term, we highlighted optimal control of resources through model-
based control of crops, and estimation of crop and soil states as the
main directions of research. We gave specific research questions on
these topics and how they can lead to answering fundamental questions
in farming operations. Using model-based crop growth management
as a central notion, it was shown that deployment of ‘digital twins’
of crops and soils can help increase the precision of decision-making
in agriculture and thus increase the quality and quantity of the food

while taking into account environmental and financial aspects. Beyond
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control of resources, estimation, and control-relevant crop-modelling,
relevant research directions for control engineering in advanced appli-
cations such as intercropping, multi-agent systems, and vertical farming
were stated in detail. These are research directions for the long term.

Many fundamental challenges in PA for arable farming can be
researched from the perspective of control engineering and it offers the
systems and control community an interesting and important research
area.
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Appendix. An example of model-based control using existing crop
growth models

For illustrative purposes, we include an example of a control scheme
that utilises some structure of several crop growth models in a model
predictive control setting. In this example we consider a single field that
is operated by a single irrigation agent. This example is a simple set-up
of the more general setting as discussed in previous work by some of the
authors of the present paper (Schoonen et al., 2019), which considers
multiple (sub)fields and multiple irrigation agents. The model of the
crop growth dynamics is here assumed to be a simulation model.

Consider the set-up of a single arable field where the crops and
soil are homogeneous over the space. Let 𝑇 denote the length of the
growing season and we consider growth and actuation to occur on a
daily basis, to this end we label time 𝑡 from the set  ∶= {1, 2,… , 𝑇 }.
Let 𝑥𝑡 be the state vector of crops on day 𝑡 ∈  , where the states include,
for instance, the biomass of the crop organs and the leaf area, and let
𝑢𝑡 denote the amount of water that is irrigated on day 𝑡 ∈  . Let 𝜋 be a
vector that represents the relative weighting of the crop states to each
other and the amount of irrigation. The simple objective we consider
here is to maximise the crop yield at harvesting, whilst minimising the
amount of irrigation (the cost of irrigation is normalised to 1). In a
mathematical formulation, we consider the maximisation of

𝐽 = 𝜋⊤𝑥𝑇 −
𝑇−1
∑

𝑡=1
𝑢𝑡, (A.1)

with 𝑢𝑡, 𝑡 ∈  , as the optimisation variables. The discrete-time dynam-
ics of the crop are assumed to be

𝑥𝑡+1 = 𝑥𝑡 + 𝐺𝑡,

for 𝑡 ∈  , where 𝐺𝑡 is the crop growth, which depends on the crop
states, soil water content, weather influences and irrigation. Hence, we
can rewrite (A.1) as

𝐽 = 𝜋⊤𝑥1 +
𝑇−1
∑

𝑡=1
(𝜋⊤𝐺𝑡 − 𝑢𝑡). (A.2)

We resort to maximising 𝐽 using a model predictive control (MPC)
scheme.

A popular method to model crop growth is by introducing a hier-
archy in growth and production factors (Van Ittersum et al., 2003):
growth-defining factors, growth-limiting factors, and growth-reducing
factors. The growth-defining factors determine the maximum possible
growth and are dependent on crop-specific parameters and weather in-
fluences such as temperature and solar irradiation. The growth-limiting
factors are due to shortage or excess of water and nutrients such as
nitrogen. The growth-reducing factors are due to, e.g., weeds and pests.

A common way to model the growth reducing factor due to water
shortage is the following. Let 𝜃𝑡 ∈ [0, 1] denote the growth-reducing
factor due to water shortage on day 𝑡 and let 𝑤𝑡 denote the soil water
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content. Furthermore, let 𝑤𝑝 be the wilting point such that if the soil m
water level 𝑤𝑡 is below 𝑤𝑝, there is no growth possible (𝜃𝑡 = 0). Let 𝑐𝑟𝑡
denote the critical water level, which is dependent on both the state of
the crop and weather influences. For 𝑤𝑡 ≥ 𝑐𝑟𝑡, it is assumed that there
is no reduction in growth due to water shortage (𝜃𝑡 = 1). Between 𝑤𝑝
and 𝑐𝑟𝑡, 𝜃𝑡 increases linearly, see also Fig. A.2. Versions of such models
for growth-reduction due to water shortage can be found in, among
others, LINTUL2/3 (Shibu et al., 2010), WOFOST (de Wit et al., 2019),
STICS (Brisson et al., 2003), AquaCrop (Steduto et al., 2009) and a
derivation thereof in Pelak et al. (2017).

For illustrative purposes, let us assume that there are no other
growth-limiting factors and there are no growth-reducing factors. Un-
der this assumption, the crop growth 𝐺𝑡 at time 𝑡 ∈  can be modelled
as

𝐺𝑡 = 𝜃𝑡 𝐺
∗
𝑡 , (A.3)

where 𝐺∗
𝑡 is the maximum potential growth (due to growth-defining

factors). As an illustrative example of a 𝐺∗, let us consider the crop
growth model LINTUL2/3 (Shibu et al., 2010). In this model, the
optimal growth is given by 𝐺∗

𝑡 = 1
2𝜆 𝑖𝑡(1−𝑒

−𝜅𝐿𝑡 ), where 𝜆 is the light-use
fficiency in gMJ−1, 𝑖𝑡 is the total daily solar irradiation in MJ, 𝜅 is an
ttenuation coefficient and 𝐿𝑡 is the leaf area index (LAI) at time 𝑡 ∈  .

From (A.3), one might be inclined to assume that the crop growth
as been separated into a part that is dependent on the soil water level
𝜃𝑡) and one that is dependent on the crop states (𝐺∗

𝑡 ), but there is
n interplay between the soil water level and the crop growth. In the
xample with the LINTUL2/3 model mentioned above, it is clear that
his occurs through the LAI (𝐿𝑡), which is typically a state in most crop
rowth models. However, when doing MPC with a (relatively small)
inite horizon of several days up to two weeks, many crop states do
ot vary much or their variation can be approximated. This allows
he MPC to compute the optimal amount of irrigation needed for crop
rowth through 𝜃𝑡 and the crop growth model can provide a reasonable
pproximation for 𝐺∗

𝑡 .
The last item we need to take into account is that the objective

unction 𝐽 considers a ‘terminal cost’ as we require the crop state at
he end of the season. It was shown in Schoonen et al. (2019) that a
easonable approximation is that the reduction of crop growth outside
f the prediction horizon is equal to average reduction of crop growth
ithin the prediction horizon. To this end, we perform two additional

imulations, one where the growth is optimal from the current day
o the end of the season, and one where there is almost complete
top of growth. Linear interpolation between the results of these two
imulation by using the average crop growth reduction within the
rediction horizon, yields an approximation for 𝑥𝑇 .

In this way, we have limited the number of simulations to be done
ompared to a crop growth management system that uses Monte Carlo
imulations, as it is only required to know (an approximation of) 𝐺𝑡
ithin the prediction horizon and an approximation of the yield at

ime of harvest. Furthermore, we are now able to use the amount
f irrigation as an optimisation variable, rather than discretising it
s is done in the Monte Carlo setting. This is especially important
n the setting where we do not wish to irrigate a single field, but
ultiple (sub)fields (more than 100 or 1000) using a limited number

f irrigation machinery. We refer to the original work (Schoonen et al.,
019) for more information on the control in this setting.

This example only considered a single field, a single resource
water), and a single delivery agent. Farming considers many more
sub)fields, resources, and deliver agents. This introduces non-trivial
onstraints on the allocation that should be taken into account (see
choonen et al. (2019)). Beyond such extensions, it is also of impor-
ance to consider the advanced applications as discussed in Section 4.
t is evident that there are huge challenges for modelling, model-based

anagement, large-scale control and optimisation, and estimation.
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Fig. A.2. Dependency of growth-reduction factor 𝜃𝑡 on the soil water content 𝑤𝑡 for a day 𝑡, where 𝑐𝑟𝑡 is the critical water level, 𝑤𝑝 is the wilting point and 𝑓𝑐 is the field
capacity.
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