
The potential of remote sensing and artificial
intelligence as tools to improve the resilience
of agriculture production systems
Jinha Jung1, Murilo Maeda2, Anjin Chang3, Mahendra Bhandari4,
Akash Ashapure1 and Juan Landivar-Bowles4

Available online at www.sciencedirect.com

ScienceDirect
Modern agriculture and food production systems are facing

increasing pressures from climate change, land and water

availability, and, more recently, a pandemic. These factors are

threatening the environmental and economic sustainability of

current and future food supply systems. Scientific and

technological innovations are needed more than ever to secure

enough food for a fast-growing global population. Scientific

advances have led to a better understanding of how various

components of the agricultural system interact, from the cell to

the field level. Despite incredible advances in genetic tools over

the past few decades, our ability to accurately assess crop

status in the field, at scale, has been severely lacking until

recently. Thanks to recent advances in remote sensing and

Artificial Intelligence (AI), we can now quantify field scale

phenotypic information accurately and integrate the big data

into predictive and prescriptive management tools. This review

focuses on the use of recent technological advances in remote

sensing and AI to improve the resilience of agricultural systems,

and we will present a unique opportunity for the development of

prescriptive tools needed to address the next decade’s

agricultural and human nutrition challenges.
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Introduction
Agriculture production systems face daunting challenges

worldwide, including climate change, dwindling water

supply for irrigation, increases in production costs, and an

overall reduction in the farm workforce over the past
www.sciencedirect.com 
several decades. Besides, the most current issue, the

COVID-19 pandemic, threatens the disruption of food

production and supply systems everywhere [1�]. These

factors threaten the environmental and economic sustain-

ability of current and future food supply systems [2�].
While agriculture is always evolving, significant innova-

tions will be needed to keep pace with persistent climate

change [3]. The obvious question here is how to produce

sufficient quality food for the fast-growing global popula-

tion sustainably. Agricultural research scientists have

always been utilizing state-of-the-art technologies and

exploring ways to integrate them into agriculture systems.

Dynamic crop simulation models have been useful tools

for integrating diverse components of agriculture systems

and allowing us to explore how those components func-

tion within the system [4]. Artificial Intelligence (AI) is

recently gaining significant attention within agriculture

disciplines because of its potential to leverage big data,

which is now becoming easily accessible through the use

of Unmanned Aircraft Systems (UAS) [5]. UAS brings an

unprecedented opportunity to enable advanced analytics

for managing agricultural systems, thus improving the

resiliency and efficiency of production systems [6,7]. In

this paper, we review current research on the use of

remote sensing technology for sustainable agriculture.

We also discuss current challenges facing the adoption

of UAS technologies, as well as future perspectives on its

integration with spaceborne remote sensing data for

national and global scale studies.

Unmanned Aerial Systems (UAS) as a
foundation for digital agriculture
Deploying individual physical sensors is often costly and

time-consuming. Maintaining them in the field is also

challenging as they frequently interfere with field opera-

tions such as tillage, planting, spraying, and harvesting.

Plants integrate genetics (G) and its surrounding envir-

onments (E) by responding to soil physical and chemical

properties, moisture availability, biotic and abiotic factors,

as well as management practices (M). In this regard,

plants can serve as field-based biological probes that

may be assessed by sensors on-board UAS. Traditional

methods of collecting crop data often fail to capture in-

field variations due to limited sampling size and are prone

to a certain level of subjectivity [8,9��]. To that end, UAS

equipped with appropriate sensors can measure the

time course of plant growth accurately, swiftly, and
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cost-effectively [8,9��,10,11]. These relatively affordable

systems also enable the collection of fine spatial and high

temporal resolution data, previously unobtainable

through conventional airborne and spaceborne remote

sensing platforms.

Current literature on Unmanned Vehicle (UV) indicates a

significant uptick in interest on the topic. Research papers

citing UV have increased from 544 in 2013 to 1593 in

2017, with areas such as remote sensing, imaging, instru-

ments, geosciences, environmental sciences, ecology,

wildlife, and agriculture seeing the most significant

increases [12]. Most notably, scientists have initially

focused on improving georeferencing accuracy [13] and

calibration [14,15] of data products. Because of the poten-

tial high-throughput benefits, researchers have also inves-

tigated the use of UAS data to assess plant phenotypic

characteristics at the field level [16��,17]. Additionally,

researchers also used UAS to estimate water stress [18],

monitor crop disease [19], map weeds [20], and estimate

biomass and yield [21–23]. Others have also demon-

strated that we can use high temporal resolution

data to estimate crop parameters such as canopy height,

canopy cover, and vegetation indices [8,9��,24], select

genotypes [25�], and predict crop yield [26].

Although some breeding programs began adopting UAS,

significant long-term challenges related to data collection/

processing and interpretation of the processed data need

to be addressed before breeders can fully embrace these
Figure 1
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systems. As raw data moves through the application

development pipeline (Figure 1), it is clear that its

integrity and quality of the raw data is crucial to ensure

the accuracy of predictive models. One way to accomplish

this is to develop standard protocols for data collection,

processing, and interpretation. One area where UAS

based High Throughput Phenotyping (HTP) system

may have a tremendous short-term impact, however, is

on the rapidly evolving Artificial Intelligence (AI) arena.

In addition to the quality of raw data, when using a large

dataset to train AI models, research has shown that

performance is outstanding even when noisy data is

involved [27], suggesting that the volume of training data

is essential in developing robust AI models for agriculture

applications. We have recently begun to witness multi-

disciplinary collaborations between computer scientists

and biologists exploring AI for agricultural applications

[28–30] (Table 1). Additionally, AI-based agricultural

tools are also currently being commercially offered

(Table 2).

Bridging the gap between genomics and
phenomics with UAS
Advanced genomics offers analytical tools for crop breed-

ing programs to understand the molecular basis of

complex traits. Next-generation sequencing (NGS) tech-

nology improves the efficiency of marker-assisted and

genomic selection by reducing the amount of time and

cost needed to genotype a large number of breeding lines.

Zeng et al. [44] made a breakthrough in the development
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Table 1

Modern Artificial Intelligence (AI) methods currently used in agriculture applications

Applications Crop Input Method/Models Performance/Result Ref.

HTP Wheat Genotypic and phenotypic data DCNN PCC > 0.7 [31]

Soybean Genotypic and phenotypic data DCNN PCC > 0.4 [32�]
Yield prediction Soybean UAS images

(RGB, Multispectral, Thermal)

DNN R2: 0.72

RMSE: 15.9 %

[33��]

Wheat UAS based VIs PLSR, ANN, RF (R2, RRMSE)

PLSR: (0.7667, 0.1353)

ANN: (0.7701, 0.1126)

RF: (0.7800, 0.1030)

[34]

Maize 2018 Syngenta Crop Challenge DNN RMSE: 46% [35]

Fruit detection Citrus UAS images (RGB) R-CNN Precision > 90% [36]

Apple UAS images (RGB) R-CNN R2: 0.8 [37]

Weed detection Rice UAS images (RGB) FCN Overall accuracy

weed mapping: 94%

weed recognition: 88%

[38]

Disease detection Bean and Spinach UAS images (RGB) CNN Overall accuracy

bean = 89%

spinach = 94%

[39�]

Wheat UAS images

(hyperspectral)

DCNN, RF Overall Accuracy

DCNN: 0.85

RF: 0.77

[40]

Banana Field images DCNN Overall accuracy

>90%

[41]

Maize Field images CNN Overall accuracy: 99% [42]

Biomass Barley UAS images

(RGB, hyperspectral)

RF PCC: 0.95%

RMSE: 33.3%

[43]

ANN: artificial neural network, CNN: convolution neural network, DCNN: deep convolution neural network, DNN: deep neural network, FCN: fully

convolutional network, R-CNN: region-convolutional neural network, RF: random forest, PCC: Pearson’s correlation coefficient, PLSR: partial least

square regression, SLR: simple linear regression, HTP: High Throughput Phenotyping, UAS: unmanned aerial system, RMSE: root mean square error.

Table 2

Commercially available Artificial Intelligence (AI)-based tools for agriculture (alphabetical order by company). The list is not comprehen-

sive, and mention/omission does not imply endorsement/discrimination

Company Website Products/Service

AGEYE Technologies ageyetech.com AI-powered platform for indoor farming

aWhere awhere.com Weather information with machine learning algorithms in connection with satellites to

predict the weather, analyze crop sustainability and evaluate farms for the presence of

diseases and pests

Blue Reiver Technology bluerivertechnology.com Smart farm machines to manage crops at a plant-level and protect crops from weeds

FarmShots farmshots.com Integrated scouting and variable rate prescription platform for farmers based on images

captured by satellites and drones

Fasal fasal.co AI-based solutions for the small farmer to provide critical parameters using affordable

sensors

Harvest CROO Robotics harvestcroorobotics.

com

Robot system to pick and pack vegetables

HelioPas AI heliopas.com AI-based soil moisture monitoring system to control irrigation, fight mildew, and deal

with drought

Hortau Inc hortau.com Web-based irrigation management service

Ibex Automation ibexautomation.co.uk Autonomous agricultural robot systems for farmers, including an autonomous precision

weed detection and spraying system

PEAT plantix.net Deep Learning-empowered image recognition application to identify potential defects

and nutrient deficiencies in soil

Root AI root-ai.com AI-based automated and robotic solutions for indoor farmers

Trace Genomics tracegenomics.com Soil analysis system to provide a sense of soil’s strengths and weaknesses using

machine learning

VineVIew vineview.com Highly specialized aerial-based spectral sensors, and a cloud-based image processing

service to monitor crop health
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of high yielding, superior quality rice varieties by pyr-

amiding multiple complex traits using high-throughput

genotyping methodologies. Genome-Wide Association

Studies (GWAS) has also been used to identify markers

linked to Quantitative Trait Loci (QTL) for several traits

such as stripe rust in wheat [45], blast resistance in rice

[46], spot blotch resistance in winter wheat [47], and

fusarium head blight in wheat [48]. Genomic selection

models are based on the training population dataset and

are used to predict non-phenotyped individuals’ perfor-

mance based on Genomic Estimated Breeding Values

(GEBVs). Therefore, to fully utilize the potential of

genomic tools for crop improvement, accurate phenotypic

measurements are needed, especially at the field level.

Additionally, detailed phenotypic data at multiple dimen-

sions will be required to bridge the genotype-phenotype

gap. Recent advances in UAS have the potential to

overcome the significant phenotyping bottleneck of many

breeding programs by providing accurate, consistent, and

reliable phenotypic data.

Watanabe et al. [49��] demonstrated that UAS-based plant

height estimates in sorghum could be done at a perfor-

mance level similar to manual measurements when using
Figure 2
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the genomic prediction model. GWAS study of canopy

height measurements taken at four key growth stages and

their respective growth rates identified 68 unique QTLs

and candidate genes controlling plant height. UAS based

phenomics can complement high-throughput genomics-

assisted crop breeding [49��] in the development of super-

ior varieties. Anderson et al. [50�] and Wang et al. [51]

demonstrated the temporal expression of QTL associated

with plant height in maize using multi-temporal measure-

ments obtained by using UAS. Awika et al. [52��] linked

genomic analysis to UAS based crop parameters such as

canopy cover, canopy volume, and excess green index

(ExG) in spinach. They identified 99 single-nucleotide

polymorphisms (SNPs) significantly associated with the

growth parameters. Growth parameters obtained by

modeling season-long temporal features were able to

reflect the phenotypic details at multiple dimensions

better than the conventional manual measurements taken

at one or a few times. Condorelli et al. [53] and Shokat

et al. [54] also showed that GWAS of vegetation indices

such as the Normalized Difference Vegetation Index

(NDVI) could help to identify QTL hotspots that

can be used in marker-assisted breeding to enhance

drought tolerance in wheat. The possibility of obtaining
Phenome
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n Studies (GWAS),
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multi-temporal phenotypic traits using UAS can reveal

additional information about the genotype, environment,

and interactions. The integration of genomics and UAS

based phenomics opens new research avenues to dissect

complex agronomic traits and identify genes governing

these traits (Figure 2). This integration can ultimately

increase the size, efficiency, and genetic gain of breeding

programs.

Digital agriculture: a combination of remote
sensing, simulation models, and artificial
intelligence (AI)
UAS provides efficient, robust, and reliable crop pheno-

typing [9��,55]. However, extensive spatial coverage by

UAS is still not currently feasible due to limited battery

and flight time. Additionally, even though UAS has low

operational costs, data processing cost increases as the

volume of data increase exponentially to cover larger

areas [56,57]. Besides UAS based remote sensing tech-

nologies, there is a significant amount of research indicat-

ing the popularity of satellite data for precision agriculture

applications [58]. Freely available satellite data, providing

coarser spatial and temporal resolution, have been

utilized to monitor vegetation and estimate yields. How-

ever, limited attention has been paid on how to adapt

them for scale-appropriate precision agriculture applica-

tions [59]. Although some commercial satellites do

provide finer spatial resolution data, temporal coverage

frequency and cost efficiency are often limitations [60].

Since precision agriculture applications require informa-

tion at a much finer scale, there is a significant challenge

in adapting methodologies across different scales [61].

One exciting opportunity is to leverage high-resolution
Figure 3
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UAS data to finetune satellite-driven phenotypic data

[61,62]. Essential advances in Machine Learning (ML)

technology create a unique opportunity for the develop-

ment of accurate, large-scale prediction and prescriptive

models. Halevy et al. [63��] highlighted the importance of

big data in ML algorithm development, especially for

extremely complex problems that we cannot model via

simple mathematical models. Halevy’s paper demon-

strated that a large amount of data could outweigh com-

plex issues, such that even simple ML algorithms can

outperform sophisticated algorithms. The success of deep

learning is mainly attributed to the availability of large,

quality training samples [63��]. We argue that one can use

crop phenotypic information extracted from UAS data to

derive accurate satellite-based crop status information at

large scales.

Crop simulation models utilize input variables such as

crop management information, weather, and soil data to

estimate crop productivity and have become powerful

tools to link physiology, genetics, and phenomics [64].

Current research in this direction focuses on the upscaling

of crop simulation models from the field to large regions

[65,66]. The main challenge involved in the upscaling

process includes the calibration of model inputs beyond

the field scale [67]. Although still in its infancy, the

integration of remotely sensed crop phenotypic data with

crop simulation models is a promising approach. While

current ML methodologies are deterministic (i.e. limited

to available examples based on which the model learns

phenotypes), crop simulation models are capable of han-

dling non-experienced scenarios (Figure 3). Benchmarks

are common practices in AI and data science to establish
AI/HPC Simulation Model

In-season management

Machine/Deep Learning

Yield Estimation

Applications
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ensed data, advanced crop simulation models, and artificial

will facilitate crop management and marketing projections.
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baselines and evaluate one approach against others. Such

benchmarks are beginning to be developed to help solve

complex problems in agriculture using AI models to

integrate phenotypic and genotypic data at the plot level

[31,32�,35].

Conclusions and perspectives
Developing sustainable crop management practices have

been a central topic in agriculture research for decades.

Moving forward, we need to improve resource use effi-

ciency of agricultural systems in order to meet current

challenges and future needs. While agriculture and food

production systems have significantly evolved over the

past several decades, ongoing technological advances

present a unique opportunity to address challenges for

the upcoming decades. UAS based HTP system is proven

to be a precise and reliable platform to quantify pheno-

typic information at field scales, and it can also be

integrated with the GWAS even to speed up breeding

cycles in many crops.

Although still in its infancy, pioneering research scientists

are coupling the UAS based HTP system with spaceborne

remote sensing, AI, and crop simulation models to

develop large-area digital agriculture applications. As it

stands, we need to pay significant attention to developing

multidisciplinary teams capable of tackling diverse pro-

blems across the biological, environmental, and computer

sciences disciplines. We also need to dedicate long term

efforts to creating standard data collection, processing,

and analysis protocols. As a central piece in the future of

data-driven digital agriculture, the importance of raw-data

quality cannot be underestimated.
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