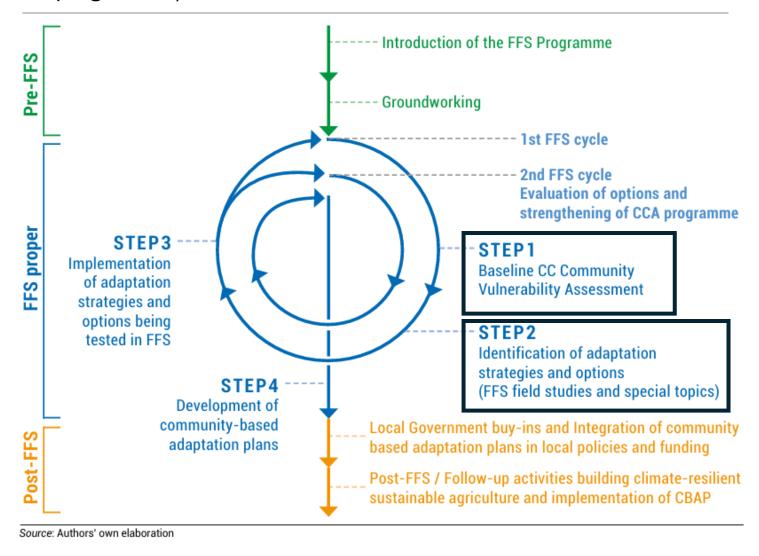


# Learning modules and exercises for farmer communities

Alma Linda Morales-Abubakar, Independent Consultant

## **Global FFS Platform**


Webinar series on Climate Change and Farmer Field School

Session 2: Equipping farmers for climate action: key concepts and tools for FFS

Date |20<sup>th</sup> February 2025| Time: 3:00pm – 4:30pm



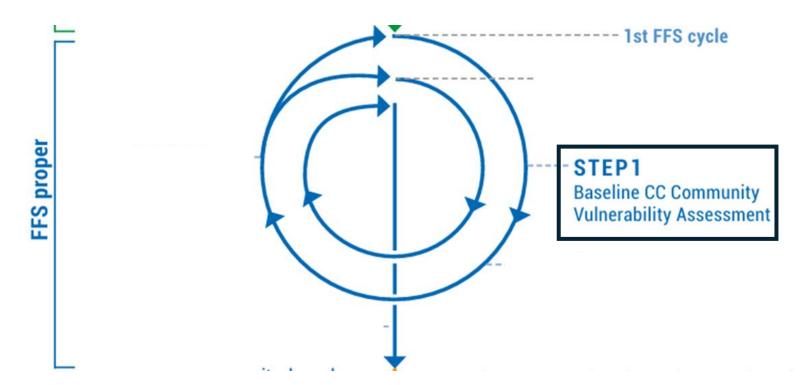
Community-based adaptation planning process (and the community climate change adaptation programme)



## Webinar series on Climate change and Farmer Field School



| S.    | Introduction of the FFS Programme |
|-------|-----------------------------------|
| Pre-F | Groundworking                     |


| Learning<br>modules and<br>exercises | Use                                                                                                                                                                                |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dialogue                             | Provide information to the local leaders about the programme; get support and endorsement to the programme – including access to farmers' groups and villages                      |
| Groundworking                        | Build trust; introduce the programme; agree on preparatory activities and identify local organization representatives including farmers' groups to join the preparatory activities |

Webinar series on Climate change and Farmer Field School





https://openknowledge.fao.org/handle/20.5 00.14283/cb6410en



Webinar series on Climate change and Farmer Field School



| Community resource mapping - |
|------------------------------|

Learning modules and exercises

 agricultural land indicating crops, soil types, soil fertility and water supply

including information on:

- location of agriculture (crop and livestock) areas in relation to water sources; different kinds of fields
- aquaculture production areas (e.g. fishponds)
- information about livestock production
- non-agricultural and nonresidential land
- degraded/impacted areas in the village

## Use

Raise awareness on the issue of climate change and its impacts on local production systems;

Identify locations where important farming system activities are carried out, and the weather risks the various activities are exposed to

Table 2: Weather-related production problems and how they affect livelihoods

| Weather-related production problem                 | How it affects<br>livelihoods         | Where does the problem have its greatest impact? | When during the year does the problem occur most often? |
|----------------------------------------------------|---------------------------------------|--------------------------------------------------|---------------------------------------------------------|
| Example: Long dry spells during the growing season | Reduces crop yields,<br>lowers income | Upland fields south of the village               | July and early August                                   |
|                                                    |                                       |                                                  |                                                         |
|                                                    |                                       |                                                  |                                                         |





| Learning                           | Use                                                   | Figure 18: Fa  | rmers    | s' ol |
|------------------------------------|-------------------------------------------------------|----------------|----------|-------|
| modules and                        |                                                       | Weather risk   | Jan      | F     |
| exercises                          |                                                       | Heatwave       |          |       |
|                                    |                                                       | Dry spell      |          |       |
| Weather threat                     | Develop a calendar that                               | Flood          |          |       |
| calendar<br>Step 1: farmers'       | identifies when, within the farming season, important | Farmers' obse  | ervation |       |
| observation                        | weather stresses most                                 | Figure 19: Fa  | rmer-    | -res  |
|                                    | commonly occur and how these might be changing        | Weather risk   | Jan      | F     |
| Step 2: farmer-                    | Discuss why information                               | Heatwave       |          |       |
| research                           | from other sources (e.g.                              | Dry spell      |          |       |
| observation                        | researchers) are different                            | Flood          |          |       |
|                                    | from farmers' observations                            | Farmers' obs   | ervation |       |
| Step 3: farmer-<br>research-future | Compare the past and the future to understand         | Figure 20: Fai | mer-ı    | rese  |
| calendar                           | climate change trends and                             | Weather risk   | Jan      | Fel   |
|                                    | what challenges may be                                | Heatwave       |          |       |
|                                    | coming                                                | Dry spell      |          | _     |
|                                    |                                                       | Flood          |          |       |

Figure 18: Farmers' observation of weather threat calendar

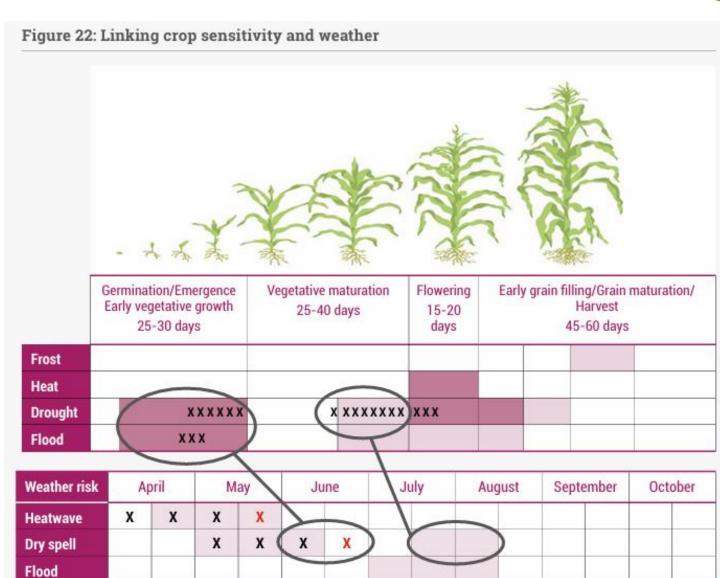
| Weather risk | Jan | 1 | Fe | b | Ма | ar | Α | pr | М | ay | Jı | ın | J | ul | Αι | ug | Se | ер | 0 | ct | N | ov | De | ec |
|--------------|-----|---|----|---|----|----|---|----|---|----|----|----|---|----|----|----|----|----|---|----|---|----|----|----|
| Heatwave     |     |   |    |   |    |    |   |    |   |    |    |    |   |    |    |    |    |    |   |    |   |    |    |    |
| Dry spell    |     |   |    |   |    |    |   |    |   |    |    |    |   |    |    |    |    |    |   |    |   |    |    |    |
| Flood        |     |   |    |   |    |    |   |    |   |    |    |    |   |    |    |    |    |    |   |    |   |    |    |    |

esearch observation of weather threat calendar

| Weather risk | Ja | an | F | eb | М | ar | Α | pr | М | ay | Jı | un | J | ul | Αι | ug | S | ер | 0 | ct | N | OV | D | ec |
|--------------|----|----|---|----|---|----|---|----|---|----|----|----|---|----|----|----|---|----|---|----|---|----|---|----|
| Heatwave     |    |    |   |    |   |    | X | Х  | Х |    |    |    |   |    |    |    |   |    |   |    |   |    |   |    |
| Dry spell    |    |    |   |    |   |    |   |    | X | X  | X  |    |   |    |    |    |   |    |   |    |   |    |   |    |
| Flood        |    |    |   |    |   |    |   |    |   |    |    |    |   |    | X  | X  | X |    |   |    |   |    |   |    |

X Research observation

search-future weather threat calendar


| Weather risk | Já | an | F | eb | М | ar | Α | pr | М | ay | Jı | un | J | ul | Αι | ıg | S | ер | 0 | ct | N | ov | D | ec |
|--------------|----|----|---|----|---|----|---|----|---|----|----|----|---|----|----|----|---|----|---|----|---|----|---|----|
| Heatwave     |    |    |   |    |   |    | Х | Х  | Х | X  |    |    |   |    |    |    |   |    |   |    |   |    |   |    |
| Dry spell    |    |    |   |    |   |    |   |    | X | X  | X  | X  |   |    |    |    |   |    |   |    |   |    |   |    |
| Flood        |    |    |   |    |   |    |   |    |   |    |    |    |   |    | X  | X  | X |    |   |    |   |    |   |    |

Farmers' observation X Research observation X Future threats

Webinar series on Climate change and Farmer Field School

| Learning<br>modules and<br>exercises                                                                                                                       | Use                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| When are local farming systems most sensitive to weather stresses Step 1: stages of plant growth and vulnerabilities to weather threats and other stresses | Develop a timeline for each local farming system, indicating those stages of development or phases in the production cycle when these are most sensitive to different weather stresses  |
| Step 2: linking crop sensitivity and weather                                                                                                               | Identify stages of crop<br>development where the<br>crop is particularly<br>sensitive to a weather<br>stress, and when that<br>weather stress has been<br>observed to commonly<br>occur |







| Learning<br>modules and<br>exercises       | Use                                                                                                                          |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| What adaptations have farmers already made | List changes that farmers<br>may have made in their<br>farming practices in<br>response to the key areas<br>of vulnerability |
|                                            | Evaluate how effective these changes have been in responding to the important weather stresses that have been identified     |

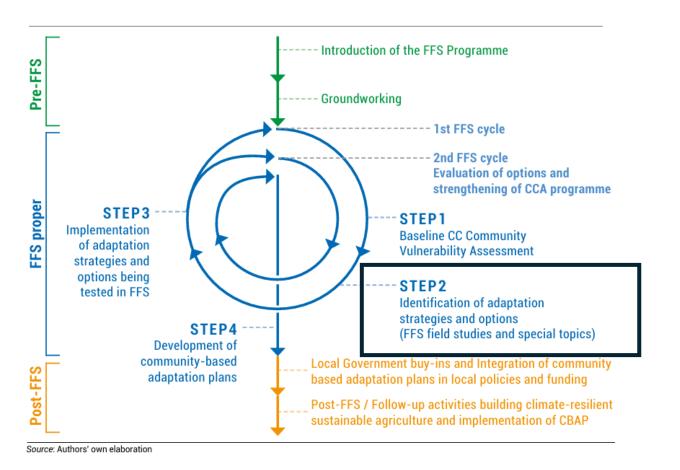
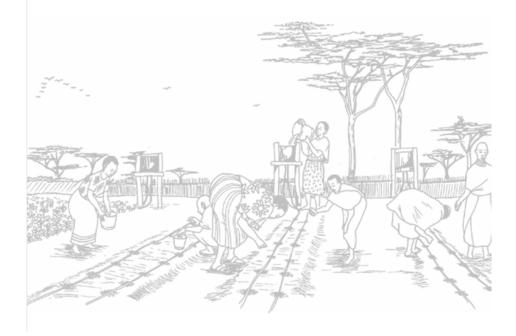



Table 3: Farming activity and product


| Action taken | Weather stress | What worked | What did not<br>work | What changes or<br>adjustments could be<br>made to make it work | Test or not test<br>(Y/N) – based<br>on feasibility,<br>difficulty, priorities |
|--------------|----------------|-------------|----------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------|
|              |                |             |                      |                                                                 |                                                                                |
|              |                |             |                      |                                                                 |                                                                                |

#### Webinar series on Climate change and Farmer Field School





## CLIMATE CHANGE ADAPTATION GUIDE FOR FARMER FIELD SCHOOLS





## Learning Activity 3.6: Climate-smart pasture species/varieties

## Learning objectives:

By the end of the session, FFS members will be able to:

- 1. Discuss the main pasture species and varieties available, and their productivity in the focal area
- 2. Identify the most climate-smart variety for their location
- 3. Select climate-smart income generating activities for implementation.

Time: 4 hours

#### Steps:

- 1. Divide the group randomly into subgroups of 4–6 persons, and assign each group to go in a different direction in rangeland to collect the various pasture species they can find and bring them back to learning site.
- 2. Ask the groups to present their findings in a plenary session.
- 3. Fill in the gaps from the group presentations by introducing the various climate-smart pasture species.

#### Webinar series on Climate change and Farmer Field School



## Learning Activity 5.3: Importance of climate-smart animal feeds

### Learning objectives:

By the end of the session, FFS members will be able to:

- Explain the importance of climate-smart livestock feeds
- 2. Discuss impact of climate change on quality and quantity of livestock feeds
- 3. Discuss alternative feed options available locally.

Time: 3 hours

#### Steps:

- Brainstorm with group members the impact of climate change on the quality and quantity of animal feeds over the last 20 years and now (trend analysis).
- 2. Discuss the causes of change of animal feeds in terms of quantity and quality.
- 3. Discuss improvement measures which can help improve the quality and quantity of feeds.
- 4. Brainstorm on options of climate-smart animal feeds (you can add multinutrient urea blocks (MNUBs) if not mentioned).
- 5. Guide the group to discuss which of the options are appropriate to their local context.
- Discuss the follow-up actions to initiate practice or experiment on the selected options, for example, making Mineral Nutrient Block (MNB) and treating local fodders with urea-molasses mixture, and so forth.



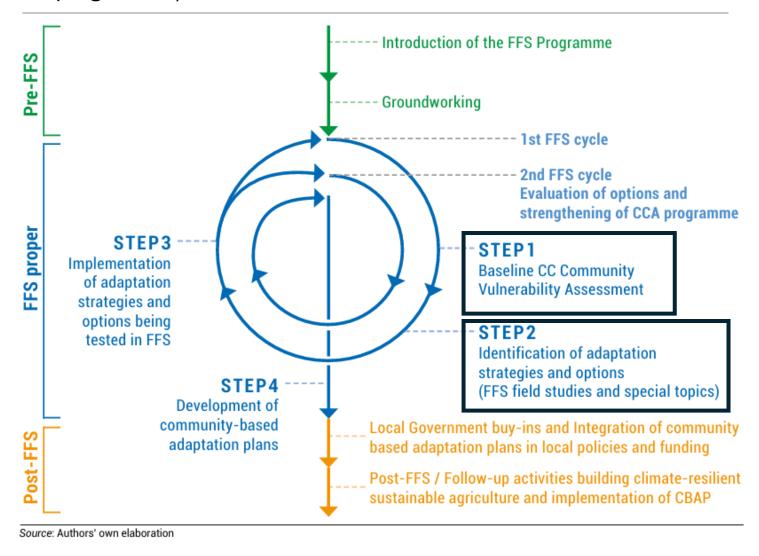
### **FARM TRIAL**

## Farm Trial 3.3: The effect of selected watershed management practices on water infiltration and retention on soils in farms on slopes

**Learning enterprise:** Soil and water management

**Trial objective:** To assess the effectiveness of selected watershed management practices on water infiltration and retention on soils in farms on slopes.

**Experiment uniform situation:** Trial undertaken in same ecozone with similar climate and soils.


**Experimentation trial description/treatments:** Participatory comparative experimentation to assess the effect of selected watershed management practices on water infiltration and retention on soils in farms on slopes. The trial comprises of four treatments (cover crop, terracing, grass strip, and retention ditch). There are no replications and the plots are of equal size.

## Trial design:

| Cover crop Terracing | Grass strip | Retention ditch |
|----------------------|-------------|-----------------|
|----------------------|-------------|-----------------|



Community-based adaptation planning process (and the community climate change adaptation programme)





alm\_abubakar@yahoo.com