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A B S T R A C T   

Accurate and operational indicators of the start of growing season (SOS) are critical for crop 
modeling, famine early warning, and agricultural management in the developing world. Erro-
neous SOS estimates–late, or early, relative to actual planting dates–can lead to inaccurate crop 
production and food-availability forecasts. Adapting rainfed agriculture to climate change re-
quires improved harmonization of planting with the onset of rains, and the rising ubiquity of 
mobile phones in east Africa enables real-time monitoring of this important agricultural decision. 
We investigate whether antecedent agro-meteorological variables and household-level attributes 
can be used to predict planting dates of small-scale maize producers in central Kenya. Using 
random forest models, we compare remote estimates of SOS with field-level survey data of actual 
planting dates. We compare three years of planting dates (2016–2018) for two rainy seasons (the 
October-to-December short rains, and the March-to-May long rains) gathered from weekly Short 
Message Service (SMS) mobile phone surveys. In situ data are compared to SOS from the Water 
Requirement Satisfaction Index (SOSWRSI) and other agro-meteorological variables from Earth 
observation (EO) datasets (rainfall, NDVI, and evaporative demand). The majority of farmers 
planted within 20 days of the SOSWRSI from 2016 to 2018. In the 2016 long rains season, many 
farmers reported planting late, which corresponds to drought conditions. We find that models 
relying solely on EO variables perform as well as models using both socio-economic and EO 
variables. The predictive accuracy of EO variables appears to be insensitive to differences in 
reference periods that were tested for deriving EO anomalies (1, 3, 5, or 10 years). As such, it 
would appear that farmers are either responding to short-term weather conditions (e.g., intra- 
seasonal variability), or longer trends than were included in this study (e.g., 25–30 years), 
when planting. The methodologies used in this study, weekly SMS surveys, provide an operational 
means for estimating farmer behaviors–information which is traditionally difficult and costly to 
collect.   
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1. Introduction 

Hundreds of millions of farmers around the world depend on rainfed agriculture for their primary source of livelihood (Dixon et al., 
2001; Rockstrom et al., 2007). However, increasing climate uncertainty and unfavorable weather conditions challenge agricultural 
production and can lead to adverse food-security outcomes. Specifically, delayed onset of rains can cause smallholder farmers to plant 
crops outside the optimal window and lead to reduced yields or total crop failure (Abrahão and Costa, 2018; Jain et al., 2015). In east 
Africa, specifically Kenya, frequent droughts and lower average seasonal rainfall during the main agricultural growing season have 
characterized recent decades (Funk et al., 2019; Liebmann et al., 1996; FEWS NET, 2019), and this raises concern for a drying trend 
becoming a “new normal.” Rainfall extremes and flood risks, such as during the very wet short rains in 2019, also highlight the large 
variability that farmers in this region face (Wainwright et al., 2021; FEWS NET, 2019). Between April 2011 and February 2020, the 
majority of Kenya was reported to be in a “Crisis” phase of food insecurity (Shukla et al., 2021). The onset date of the rainy season is a 
key driver of food security and livelihood for small-scale farmers who depend largely on rainfed agriculture. 

The timing of planting (sowing) is one of the most-critical decisions an agriculturalist will make in rainfed farming conditions and is 
highly impacted by the rainy season onset. Studies have shown the potential for improved yields when the date of planting is timed 
with rainfall onset (Sultan et al., 2005). If a farmer plants too early the seed may fail to germinate due to insufficient soil moisture. If a 
farmer plants too late, there may be insufficient rainfall during the later parts of the growing season, which are crucial for crop growth 
for staple crops such as maize. In east Africa in particular, the highly variable nature of rainfall and general lack of access to irrigation 
places extreme importance on planting dates. 

Understanding the relationship between planting decisions and social and environmental factors requires estimations of sowing 
dates. These sowing dates can either be observed or estimated. In general, there is a lack of observed sowing date information, 
especially for large-scale analyses in sub-Saharan Africa (SSA). Even at the village level, data on sowing dates is generally lacking 
because it is difficult and expensive to collect. Traditional methods of collecting planting date information include household surveys 
or, more recently, remotely-sensed estimations (Zhang, 2020). However, the decision to plant is one that is largely made in real-time by 
farmers, and as such, is susceptible to fast changes in the environment or weather forecasts. Furthermore, the planting date recalled at a 
later date can prove inaccurate due to faulty recall. Thus, while household surveys can capture broad planting patterns, such as what 
month they occurred, planting dates should also be ascertained by real-time data collection, such as through mobile phones. Mobile 
phones offer the potential to collect data in real-time with high frequency, which are otherwise difficult to capture, and thus address 
data gaps in food security and crop modeling studies (Giroux et al., 2019). Monitoring smallholder farmers’ grain storage is one 
example where mobile phone data collection has elucidated the temporal dynamics of intra-seasonal food security (Waldman et al., 
2020). 

Planting patterns throughout the world are generally tied to rainfall climatology and the general tenet in the literate states that 
planting in tropical rainfed systems occurs at the start of the rainy season (Bondeau et al., 2007; Bussmann et al., 2016; Fisher et al., 
2015; Laux et al., 2008; Laux et al., 2010). However, while planting dates at the start of the season do maximize available water, these 
planting dates may be unrealistic at the field level (Bussmann et al., 2016; Laux et al., 2010; Waha et al., 2012). Srivastava et al. (2016) 
state that the assumed relationship between climate and planting can mask other factors and perhaps more true drivers behind sowing 
decisions. 

Earth observation (EO) data, such as evaporative demand, rainfall, and vegetation greenness change as a result of rainy season 
onset and therefore correlate with farmers’ planting dates. However, the decision of when to plant is complex and driven by multiple 
factors besides spatio-temporal variability in soil water or rainfall. For example, farm-level biophysical factors (e.g., soil type, soil 
texture, and topography) interact with rainfall patterns to produce varied soil conditions, which then influence the timing of land 
preparation and planting (Matlon, 1980). Further, both scientific evidence and common sense indicate that farmer-specific socio-
cultural, demographic, economic, technological, and logistical factors interact to influence planting date (Zhang, 2020). Although we 
have a limited understanding of the complex human drivers (broadly writ) of planting dates, the existing literature does reveal several 
relationships of interest. 

Household attributes related to socio-economic status (such as education, income, and access to various forms of capital) can 
influence farmers’ perceptions of the right time to plant as well as their ability to execute planting-related decisions. Studies in Ethiopia 
have found that farmers’ ability to adjust their planting dates is significantly impacted by income and formal education (Belay et al., 
2017; Negash et al., 2011), which provide farmers with the informational and financial capacity they need to adapt to variable weather 
conditions. Differences in knowledge and information can also lead to variations in crop planting date. Studies show that farmers in 
Ethiopia and Swaziland, for example, are more likely to alter sowing dates if they have access to extension services and climate in-
formation that help them plan for the start of season (Belay et al., 2017; Shongwe et al., 2014; Negash et al., 2011). 

Knowledge-related factors intersect with age and other socioeconomic and demographic factors, including gender. For example, 
late planting of cotton in Cameroon has been linked, in part, to lack of extension for young farmers (Deveze and Halley, 2005). Studies 
also show that farmers’ ability to adapt to climate change through adjustments in planting dates is significantly impacted by gender 
(Belay et al., 2017), as well as age and the size of social networks (Shongwe et al., 2014). These results are consistent with what we 
know about agricultural technology adoption more broadly (Van den Berg, 2013; Jain et al., 2015; Krell et al., 2020). 

Finally, planting dates are influenced by the amount of land that needs to be planted and how many people are available to assist. 
Family size can alter sowing dates even within areas where there is a similar time of rain onset because farmers with larger families can 
plant earlier, and with more flexibility in response to environmental cues due to greater availability of labor (Sacks et al., 2010; 
Srivastava et al., 2016; Marie et al., 2020). In the Gondar Zuria District of northwestern Ethiopia, Marie et al. (2020) found that both 
farm and family size were positively correlated with the adoption of early and late planting in male-headed households, which the 
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authors attribute to improving the resources available to households for implementing new agricultural technologies and practices. 
However, this is not necessarily a linear relationship: small farm size is often correlated with lower wealth and asset ownership (Harris 
and Orr, 2014), which may prohibit these farmers from accessing technology, information, and capital that facilitate their ability to 
meet desired planting dates. On the other hand, farmers with large plots of land may find themselves unable to plant “on time” if they 
lack adequate machinery or labor (whether paid, family, or animal). 

This paper investigates the relationship between household-level variables, EO datasets, and planting decisions among small-scale 
maize producers in central Kenya. As an applied paper, we investigate the feasibility of using EO datasets to predict planting dates; 
however, we consider the effect of both social (household-level) and environmental factors on farmer-reported planting dates. Our 
primary motivation for exploring biophysical variables via EO datasets is that they are already collected with wide temporal and 
spatial resolutions, and are available in near-real time. In contrast, socioeconomic variables are generally limited in scope, temporal 
resolution, and in the case of household surveys, are published long after they are collected. The household-level variables chosen are 
intended to provide a baseline snapshot of the farmers’ social and demographic context. Our study uses two methods of planting dates 
data collection–real-time mobile-phone based surveys and household surveys–as well as household demographic variables and EO 
datasets to answer the following questions:  

1. Can antecedent agro-meteorological variables related to the start of season and household attributes be used to accurately predict 
the planting dates reported by small-scale maize producers?  

2. How much, if any, does prediction improve when we include household variables compared to only EO datasets?  
3. Which physical dataset best predicts planting dates? 

We used a simple rainfall-accounting methodology–described by AGRHYMET (1996) and implemented operationally in the Water 
Requirement Satisfaction Index (WRSI)–to define the onset of rains, herein referred to as SOSWRSI. We then subtract the farmers’ 
planting date from the SOSWRSI to get a measure of difference between the planting date and SOS. With this planting difference, we run 
multiple random forest models to determine which social and environmental variables, and for which farmer geographic locations, 
planting decisions align best. We find that farmers’ planting dates co-vary with the SOS, as the majority of farmers plant within twenty 
days of the SOS. We investigate which EO datasets and household variables predict planting decisions and find strong predictive 
relationships for EO data. Lastly, changing the reference period used to define anomalies for EO data results in small and varying 
differences in predictive accuracy. Overall, we show the utility of using EO data when in-field planting dates are unavailable. 

2. Study site 

The study was conducted in a semi-arid region in central Kenya, on the western slopes of Mount Kenya. We surveyed small-scale 
farmers in communities in the Kenyan highlands, specifically in Laikipia, Meru, and Nyeri counties. Rainfall patterns in the study site 
vary, with higher-elevation areas receiving as much as 1000 mm annual rainfall, and semi-arid lowlands receiving less than 500 mm 
(Gichangi et al., 2015; Krell et al., 2021). Annual rainfall is bimodal, with wet seasons extending roughly from March to May or early 
June (long rains), and then again from October to December (short rains). These two wet seasons are separated by two short, dry 
seasons from July to September, and January to February. 

Agricultural production in Kenya is largely rainfed. However, some of the households surveyed as part of this research participate 
in local water resource governance groups called Community Water Projects (CWPs). Households that have CWP membership receive 
varying amounts of water for irrigation and domestic use from a network of pipes that distribute water from Mount Kenya (Waldman 
et al., 2019). Members interact on a weekly to monthly basis in meetings and maintain irrigation infrastructures. To become a member, 
farmers typically pay a fee to join and to connect to piped networks serving irrigation water and monthly maintenance fees. 

Maize is a staple crop grown in the region, and other crops grown at the household level include cowpeas, beans, snow peas, 
sunflowers, a variety of fruit trees, cabbage, and leafy green vegetables. Farmers have opportunities to sell their crops at local markets 
in the nearby towns such as Nanyuki and Timau. In addition to small-scale agricultural production, the local economy is also fueled by 
industrial agriculture of flower farms, canola oil, and other cash-crop farms. Overall, the region is a heterogeneous environment in 
which multiple commercial producers compete for surface water and groundwater access, which, along with increased population 
growth, has led to increased demand and decreased water flow over the past 60 years (Ngigi et al., 2007). 

Table 1 
Advantages and disadvantages of survey type methodologies employed in the study.  

Survey Type Advantages Disadvantages  

Real-time capture of social-environmental issues Network constraints 
SMS Actionable information Respondent fatigue  

Relative low cost Data mining challenges with missing observations.  
Higher question volume High cost per observation 

Household survey Ability to probe meaning and intent behind response. Time intensive  
Completeness Recall error  
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3. Data 

3.1. Farmer-reported planting dates 

We collected farmer responses on planting dates by two means: household surveys (HHS) and Short Message Service (SMS) surveys 
between 2016 and 2018. We summarize the advantages and disadvantages of the two available sources of planting dates in Table 1. 
The farmers selected for the study are smallholder farmers living in Laikipia, Meru, and Nyeri counties in central Kenya. We selected 
the households as part of a five-year multi-institutional research project conducted in communities surrounding Nanyuki, Kenya 
(Lopus et al., 2017; McCord et al., 2017). The project assessed agricultural decision-making of smallholder farmers enrolled in irrigated 
community water projects (CWPs), and households without access to irrigation living in the same communities (non-CWP farmers). We 
selected either heads of household or spouses of the heads of household as survey respondents. 

The week of farmers’ planting was collected via SMS during two growing seasons. Farmers responded to the question, “Have you 
planted maize in the last 7 days,” and responses were uploaded automatically through an API (textit.in). We converted the week prior 
to the farmers’ response into dekads, which correspond to the first, second, or third 10- or 11-day period of the month, to estimate a 
planting dekad (WMO, 1992). Therefore, we use an estimate of the week of farmers’ planting in dekads, which we refer to as planting 
dekad (see Table 3). Further details on SMS survey sampling can be found in Appendix A. 

We conducted two household surveys in 2017 and 2018, which provided information about farmers’ planting dates during the 
short rains 2016 and 2017 seasons and the long rains in 2018. Importantly, the household surveys captured recalled estimates of 
farmers planting. For example, we asked about farmers’ planting decisions in the 2016 short rains (October to December) during the 
household survey conducted between March and April 2017. Therefore, there was an approximately 6 month gap between the planting 
date and the recorded planting date. The only season that was captured in the household survey with less than a six-month gap was the 
2018 long rains season. We surveyed farmers between June and July in 2018 who reported their week of planting for the 2018 long 
rains (approximately 4-month gap or less). Further details about the household survey sampling can be found in Appendix B. The 
number of farmers who provided planting date information through either survey type is shown in Table 6. The total number of unique 
farmers that responded to either survey type is 659. 

Table 2 
Description of environmental datasets.  

Variable Product Spatial 
Resolution 

Temporal 
Extent 

Measure 

Rainfall CHIRPSa 0.1◦ (~10 km) 1981-Present 1,3,5, and 10 year rainfall anomalies during the month of 
planting 

Evaporative 
Demand 

Reference ET (ET0) Monitoring 
Datasetb 

0.125◦ (~12 
km) 

1981-Present 1,3,5, and 10 year ET0 anomalies during the month of 
planting 

NDVI MAX NASA MODIS TERRAc 0.08◦ (~8 km) 2001-Present 1,3,5, and 10 year NDVI MAX anomalies during the month 
of planting 

aClimate Hazards Center InfraRed Precipitation with Station data. 
bUses MERRA-2 atmospheric reanalysis. 
cNormalized Difference Vegetation. 

Table 3 
Description of household survey variables used in random forest models and metrics used to assign planting decisions.  

Variable Description Data Type 

County County of household location. Categorical 
Community Water Project 

(CWP) 
Does the household participate in Community Water Project (CWP). I.e., does the household have access to 
irrigation. 

Binary 

Farm size (hectares) Size of farm plot in hectares (ha). Continuous 
Farmer group Is the farmer engaged in a farmer group. Binary 
Agricultural cooperative 

member 
Is the farmer engaged in an agricultural cooperative. Binary 

Contact with extension Has the farmer been in contact with an agricultural extension agent in the past year? Binary 
Total Livestock Units (TLU) Index of number of livestock owned by household (Jahnke, 1982). Continuous 
Household size (Number of 

people) 
Size of household in number of persons. Continuous 

Education (Highest level 
attained) 

Highest level of education completed by head of household. Categorical 

Planting date The planting date from either the SMS or household survey. Continuous 
SOSWRSI dekad Dekad of SOS using AGRHYMET rainfall accounting Continuous 
Planting dekad Dekad of week of planting. Continuous 
Community average 

planting dekad 
Average planting dekad for community in which the farmer is located. Continuous 

Planting decision Difference between the Planting dekad and SOSWRSI dekad. Provides a metric of planting decision in which negative 
numbers indicate early planting relative to the SOSWRSI. 

Continuous  
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For both the SMS and HHS, GPS coordinates were collected at the households’ home. The structure at which the geographic co-
ordinates were collected were, on average, less than 100 meters away from the field where the planting occurred. Therefore, the GPS 
location and the field that was planted were, in almost all cases, co-located, and thus, the GPS coordinate closely reflects the farmers’ 
field. For future studies that use EO variables with a spatial resolution on the order of 10 m to 500 m, better care would be needed to use 
GPS coordinates that represent the actual field. For the purpose of this study, where the spatial resolution of the EO variables is be-
tween ∼8 to 12 km (see Table 2), the GPS location at the farmers’ home is sufficient. 

3.2. Start of Season (SOS) 

In this study, we focus on a metric for determining the SOS using a threshold amount and distribution of rainfall received in three 
consecutive dekads, as defined by the Agriculture-Hydrology-Meteorology Regional Center in Niger (AGRHYMET, 1996). This metric 
was selected because it is the primary methodology implemented in the Water Requirement Satisfaction Index—a simplified crop- 
weather analysis model commonly used by used by the Famine Early Warning Systems Network (FEWS NET) for monitoring 
ongoing growing seasons, as well as a proxy for crop-yield information at the conclusion of seasons. This methodology indicates that a 
SOS is established when there is at least 25 mm of rainfall in an initial dekad, followed by a total of at least 20 mm of rainfall in the 
following two consecutive dekads. Once these rainfall metrics are met, the SOS is defined as the first dekad in that 3-dekad series, and 
will hereby be referred to as SOSWRSI. The input used for rainfall is the Climate Hazards Center InfraRed rainfall with Station data 
(CHIRPS) rainfall product. CHIRPS is aggregated from daily to dekadal time steps, and resampled from its native 0.05-degree spatial 
resolution to 0.1-degree (∼10 km) spatial resolution by the Climate Hazards Center. 

In addition to the rainfall-based thresholds, there are several methods of confinement commonly used in the WRSI, which were also 
adopted here. These methods include standard growing season “windows”, as well as a climatology-based planting window. The 
growing season windows are particularly important in areas such as Kenya, in which there is a mixture of unimodal and bimodal rainy 
seasons, with one of those seasons crossing the calendar year. 

In east Africa, the monitoring window for the long rains season begins February 1st (dekad 4) and ends at the end of November 
(dekad 33). Monitoring of the short rains begins September 1st (dekad 25) and concludes at the end of February (dekad 6). The second 
method of confinement is an iteratively calculated, climatology-based planting window. This involves calculating the mode historical 
SOSWRSI for each gridcell (1981–2019), and then confining SOS dates to be no earlier than three dekads before the mode SOSWRSI, and 
no later than nine dekads (three months) after the mode. This confinement rule is then used to recalculate historical SOS dates, and the 
mode SOSWRSI, until convergence (or 10 iterations). 

Together, these two confinement methods are intended to simulate farmer behaviors; e.g., if planting usually occurs some time in 
February, they are unlikely to plant in July, even if an abnormal rainfall event were to technically satisfy planting conditions. 
Furthermore, at a certain point in a season experiencing delayed rains, a farmer will likely be forced to choose to abandon cropping for 
that year and search for alternative means of employment or funding (e.g., crop insurance). This also helps to limit instances in which 
an SOSWRSI may be double counted across two overlapping growing seasons. If there is insufficient rainfall for an SOSWRSI within the 
confined dates for a given gridcell, then the SOS for that given gridcell is No Start. The mode of the SOS between 1981–2019 in the 

Table 4 
Summary statistics of categorical demographic variables.  

Variable Index n Proportion 

County Laikipia 326 0.50  
Meru 145 0.22  
Nyeri 142 0.22  
No Response 45 0.07 

Community Water Project (CWP) Yes 487 0.74  
No 171 0.26 

Farmer group member Yes 254 0.39  
No 360 0.55  
No Response 44 0.07 

Agriculture cooperative member Yes 83 0.13  
No 531 0.81  
No Response 44 0.07 

Contact with extension Yes 337 0.51  
No 277 0.42  
No Response 44 0.07 

Education (Highest level attained) None 35 0.05  
Some primary 67 0.10  
Completed primary 145 0.22  
Some secondary 81 0.12  
Completed secondary 143 0.22  
Some post-secondary 34 0.05  
Completed post-secondary 54 0.08  
Vocational Training 22 0.03  
Unknown 21 0.03  
No Response 56 0.09  
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study site was between the first dekad of March and first dekad of April for the long rains and the first dekad of October for the short 
rains as shown C. 

3.3. Variable description 

We use a precise value of SOSWRSI for each farmer based on the farmers’ household location where their planting occurred. There is 
spatial variability in the gridded SOSWRSI dataset in which multiple values of SOS exist for each year and season under study. Therefore, 
we extracted the dekad of SOS based on the farmers’ household location. Both the SOSWRSI and week of planting variables are in 
dekads, and so we subtracted the SOSWRSI from the planting dekad to get an estimate of planting decisions. Negative values tell us that 
the farmer planted before the SOSWRSI whereas positive values tell us that farmers planted after the SOSWRSI. We use three EO datasets 
that have a theoretical relationship to farmer planting dates and the onset of the rainy season (Table 2). A farmers’ timing of planting is 
a decision that not only relates to environmental drivers but is also governed by social and logistical constraints. Thus, we also consider 
household variables that are included in the random forest models as independent variables (Table 3). We use the dependent variable 
of planting decision and several EO datasets as independent variables. The farmer planting decision is the difference between the 
SOSWRSI and the farmer’s week of planting in dekads. 

As described in Table 3, we use a subset of individual and household-level variables, selected in accordance with the literature, to 
capture the influence of socio-economic factors on planting date. The household-level attributes chosen are meant to provide a baseline 
for the demographic characteristics of the farmers rather than seeking causal drivers of planting. We report descriptive statistics for the 
farmer demographics in Tables 4 and 5. As shown in Table 4, the majority of farmers (74%) are part of a CWP. The most frequent levels 

Table 5 
Summary statistics for discrete demographic variables. SD is standard deviation. Min is minimum value. Max is maximum value.  

Variable n  Mean SD Min 25% 50% 75% Max 

Farm size (ha) 608 2.80 2.56 0.1 1.25 2.0 3.50 22.0 
Household size (number of people) 609 4.28 2.00 1.0 3.00 4.0 5.00 16.0 

Total Livestock Units (TLU) 608 2.48 1.97 0.0 1.21 2.1 3.37 15.4  

Fig. 1. Map showing study area (denoted by a red rectangle) within central Kenya. Inset map shows household locations in Meru, Nyeri, and 
Laikipia counties. Spatial variability in average annual rainfall is shown by the blue colorbar. Average annual rainfall was estimated using historical 
annual rainfall (1983–2016) from an enhanced Climate Hazards Center InfraRed rainfall with Station data (CHIRPS) product that was created by 
blending 710 quality controlled dekadal station observations with the publicly available CHIRPS product (Funk et al., 2015). Contours of 200 mm 
were delineated using the GeoCL.IM Contour Tool. 
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of education attainment are completed primary school (22%) and completed secondary school (22%). The households in our survey 
had, on average, 4.28 members, 2.48 Total Livestock Units (the methodology for calculating this variable can be found in Jahnke 
(1982)), and a farm size of 2.80 ha (shown in Table 5). Previous studies have further investigated the socio-demographic attributes of 
the farmers, such as use of weather forecasts (Guido et al., 2020; Guido et al., 2021) and use of mobile phones for agriculture (Krell 
et al., 2020). 

3.4. Spatio-temporal patterns in planting decisions 

The following description of spatio-temporal patterns in planting decisions describe Figs. 2 and 3. In Fig. 2, we characterize the 
distribution of planting decisions by years and seasons for the two survey types. Within those distributions, we consider whether 
farmers planted before the SOSWRSI (which are indicated by negative values on the x-axis), after the SOSWRSI (positive values) or in the 
same dekad as the SOSWRSI. A crude estimate of “on time” planting would be when the SOSWRSI dekad matches exactly with the dekad 
of farmers’ planting. However, we acknowledge that simply defining late or early planting as 1 or more dekads away from the SOSWRSI 
is too restrictive. Thus, in our evaluation of the temporal distributions of planting decisions, we take a conservative approach in how 
we evaluate late and early planting. For the purpose of visualizing how many farmers planted before or after the SOS, we consider on 
time planting to be farmers who planted within two dekads of the SOSWRSI. In other words, farmers who planted three or more dekads 
(equivalent to 30 or more days) before the SOSWRSI planted “early,” and farmers who planted three or more dekads after the SOSWRSI 
planted “late.” Designations of “on time” planting are indicated by the vertical gray bars in Fig. 2. We use this conservative estimate of 
on time planting because there can be errors both in terms of the recording of planting dates and in the SOSWRSI estimate. Note, these 
descriptions of “on time” planting are not used in the Random forest models; rather, we use the planting decision variable for modeling 

Fig. 2. Distributions of difference between planting decisions in dekads (PD) and the SOSWRSI in dekads. The gray-shaded envelope between − 2 and 
2 indicates ”on time” planting. Negative dekad values less than − 2 indicate that farmers planted early and positive values greater than 2 indicated 
late planting. Subplots arranged by year (columns) and season (row); a-c show planting distributions for long rains; d-f show distributions for long 
rains. Distributions are reported for SMS surveys in blue and HHS surveys in orange. The SMS and HHS surveys overlap for three survey periods: 
short rains 2016, short rains 2017 and long rains 2018 (subfigures c, d, and e). 
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purposes. 
Because we have SMS-reported planting dates for all of the seasons, we can compare temporal patterns in planting between seasons 

and years. Looking at the SMS-reported planting decisions (blue histograms in Fig. 2), there is variability in planting behaviors be-
tween seasons and years. We show that planting decisions generally followed a unimodal distribution for the 2016 and 2017 long rains 
and 2018 short rains. In the 2016 long rains, the majority of farmers planted after the SOSWRSI (indicated by positive values) whereas in 
the 2017 long rains season the majority of farmers planted on time. The 2018 long rains season had two peaks of planting decisions 
dekads, and thus shows a bimodal distribution compared to the previous two years. Both of these peaks fall within the on time 
designation and fewer than twenty farmers planted late. We describe deviations from on time planting behavior during the 2016/2017 
rainfall seasons compared to the 2018 season in Section 6.3. 

For the short rains, the distributions of planting decisions are more variable across years. Looking at just the SMS survey type, there 
were multiple peaks of planting in 2016 and 2017 whereas in 2018 there was one peak. In 2018, the majority of farmers planting in the 
same dekad as the SOSWRSI, and the planting decisions are normally distributed around that behavior. In the 2016 short rains, most of 
the farmers planted on time. In 2017, farmers planted on time or late but within three dekads of the SOSWRSI. In 2018, all farmers 
planted on time. Because the SMS-reported planting decisions are the focus in the rest of the paper, we omit a discussion on the 
differences between SMS and HHS-reported planting decisions which can be found in Appendix D. 

We show the spatial distribution of farmers’ planting patterns by season in Fig. 3. Across the landscape, farmers in all counties plant 
during both rainy seasons, as indicated by the blue triangle symbol. On the eastern side of the study site, such as on both sides of the 
Meru and Laikipia county boundary line, we see that farmers slightly favor planting only once per year, during the long rains. Farmers 
who only plant during the short rains (OND) are more likely to be in Laikipia or Nyeri counties compared to Meru county. 

4. Methods 

We use random forest models to evaluate how well EO products that are typically used for agricultural modelling can be used to 
predict whether farmers plant early, on time, or late relative to a rainfall-based estimate for the start of season in dekads. 

Prior to model fitting, we convert each of our environmental predictor variables into anomalies (value in a given month differenced 
from a mean calculated from prior years). The use of anomalies as predictors is standard practice when working with EO variables as 

Fig. 3. Map showing spatial distribution of farmers in the study site by season planted. The transparency is set to 70% on all markers. Season 
planted shown as orange circle for long rains (MAM), red diamond for short rains (OND), and blue triangle if both seasons were planted. 
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they place the key variable in a context relative to spatial and seasonal averages. In this paper, we explore if the reference period used 
to define an anomaly impacts model performance. Specifically, we define anomalies over 1,3,5, and 10 year rolling averages and 
compare predictive performance of these anomalies across models. For example, if the performance of an EO product based on a one 
year anomaly notably outperforms a model based on a 10 year anomaly, this provides useful information for future planting models 
and also suggests that farmers are more likely to respond to more recent, rather than historical, weather trends when making decisions 
about planting dates. Formally, the anomalies are defined by: 

ẼO(m,y) = EO(m,y) −
1
N

∑y− 1

y− N
EO(m,y) (1)  

where EO is an earth observation product listed in Table 2, m indexes calendar months, y indexes years, and N refers to the 1,3,5 and 10 
year periods. 

We compare the forecast accuracy of these different anomaly definitions in several different model specifications. Each model 
specification includes various combinations of survey and EO variables (Table 7). Specifically we compare in and out-of-sample 
forecast accuracy of a model that uses just the survey variables (model [1]), models that use survey variables along with one of the 
EO products (models [2,3,4]), a model that uses only EO variables (model [5]), and a model that uses all survey and EO variables 
(model [6]). We cleaned and prepared the planting data for analysis using Python programming language (Python Software Foun-
dation et al., 2020). The random forest models were completed using the randomForest and rpart packages in R (Liaw and Wiener, 
2002; Therneau et al., 2019). 

We fit separate models for the HHS and SMS survey types but focus our primary results on the SMS surveys since the planting dates 
in these surveys are not based on recall and thus tend to be more accurate. We also fit separate models for the county of Lakipia and for 
the combined counties of Meru and Nyeri because this provides roughly equal sample size between the two partitions. To test out of 
sample accuracy we use the model fit for Laikipia to predict Meru/Nyeri, and vice versa. Our primary results focus on models that are 
pooled across years. However, because EO variables tend to have more temporal variation than household variables–and thus might 
have a predictive advantage over survey variables–we also report supplementary results for separate models run on each year. 

5. Results 

The results of the random forest models are shown in three figures. Fig. 4 compares overall performance across models [1–6] and 
anomaly periods (1, 3, 5, and 10 year). Fig. 5 compares the performance of individual variables and Fig. 6 examines the out-sample- 
predictive accuracy. Corresponding figures displaying the results for each individual year are shown in Appendix F. 

We begin with Fig. 4 to explore the degree to which survey and EO variables can be used to predict the planting date anomalies of 
small-scale maize producers. Fig. 4 shows in-sample Mean Squared Error (MSE) values) for models [1–6] with the four different 
reference periods (1, 3, 5, and 10 year) used to define EO anomalies. The results are separated by models fit for each region (Laikipia 

Table 6 
Summary statistics of planting dates and SOSWRSI. Data includes two survey types (SMS and HHS), three years (2016–2018), and two seasons (MAM 
and OND). n represents the number of farmers providing their planting date for that season, year, and survey type. We report the mean, median, and 
standard deviation of the planting date in dekads. Planting range (inclusive) represents the earliest and latest dekad of planting reported. SOSWRSI 
mean is the average SOS in dekads experienced among the farmers since there is spatial variability in the SOSWRSI. Because certain seasons had more 
than one start of season due to the spatial heterogeneity of rainfall, we also note the number of unique number of SOSWRSI in the study site per season.  

Survey Type Year Season n PD Mean PD Median PD Mode PD SD PD Range PD Unique SOSWRSI Mean SOSWRSI Unique 

SMS 2016 MAM 119 10.94 11.0 10 1.34 [9, 16] 7 9.00 1   
OND 179 30.69 31.0 29 1.48 [28, 33] 6 30.10 2  

2017 MAM 242 9.72 10.0 10 1.53 [7, 14] 8 9.93 2   
OND 66 29.68 29.5 31 1.30 [28, 31] 4 28.00 1  

2018 MAM 281 7.98 7.0 7 1.28 [7, 12] 6 9.00 1   
OND 201 28.69 28.0 28 0.79 [28, 30] 3 28.35 3 

HHS 2016 OND 310 28.06 28.0 28 1.40 [25, 33] 9 30.10 2  
2017 OND 272 26.97 28.0 28 2.23 [22, 32] 11 28.00 1  
2018 MAM 517 8.16 8.0 8 1.74 [4, 15] 12 9.00 1  

Table 7 
Description of model specifications.  

Model Name Model Description 

[1] survey Uses only survey variables 
[2] precip Uses survey variables and the CHIRPS rainfall product 
[3] NDVI Uses survey variables and NDVI 
[4] ET0 Uses survey variables and evaporative demand 
[5] EO Uses only EO variables (precip, NDVI, and ET0) 
[6] all Uses all EO variables and all survey variables (combines models [1] and [5])  
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and Meru/Nyeri). 
The best performing models across all lag types are the models with solely EO variables (Fig. 5, 5-EO) and the models with all of the 

variables (Fig. 5, 6-all). Models [5] (EO only) and [6] (all variables) perform similarly across lag types and regions: the model with only 
EO variables [5] had MSE values between 0.92 and 1.02 across lag types and regions while the [6] model with all variables had MSE 
values between 0.97 and 1.11. Overall, the models with EO datasets (5-EO) and the models with all of the variables (6-all) exhibit the 
strongest predictive relationship with planting behavior as demonstrated by the low MSE.1 

We find that models with only EO variables [5] perform better than models with only survey variables ([1] survey) or any indi-
vidual EO model ([2] precip, [3] NDVI, and [4] ET0). However, when looking closely at individual EO datasets, we find that not all EO 
datasets perform similarly. We find that the rainfall and ET0 models have stronger influences on planting decisions compared to NDVI. 
Contributions of individual variables to model fit are presented in Fig. 5. 

Fig. 4. Random forest model results showing Mean Squared Error (MSE) across models (rows within subplots, 1:6) and lag types (rows of subplots a: 
d). Results are subsetted by region where Laikipia county is demonstrated by the circle symbol; Meru and Nyeri counties are demonstrated 
by triangles. 

1 While the focus of our paper is on out of sample predictions we also include the corresponding plots with R2 values-squared in E). The values 
shown in E.9 correspond with those here: models [5] and [6] have the highest explained variance with values ranging from 0.6 to 0.7. 
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In Fig. 5, we disaggregate the results to analyze variable importance in the best performing models: [5] and [6]. We use the 
standard measure variable importance for random forests: the mean increase (across all trees) in MSE when a given variable is 
excluded from a model. By this methodology, rainfall and ET0 tend to contribute most to in-sample predictive accuracy regardless of 
model or lag type. Across lag types (1,3,5, and 10-year anomaly reference periods), rainfall exhibits a marginal increase in importance 
with longer than 1-year lag type. More notable is an increase in ET0 importance, particularly at Laikipia, with a longer than 1-year lag 
type. This suggests that evaporative demand anomalies defined over longer reference periods may be stronger predictors of planting 
dates compared to ET0 differences from the previous year. 

The community average planting dekad is the highest ranked variable of the survey variables. This is unsurprising as this variable is 
a spatial semi-autoregressive variable in which the dekdad of planting date is included in the dependent variable. However, ET0 is 
ranked equal to higher than community average planting dekad in every model and for both regions. This indicates that ET0 has the 
potential to be a robust predictor of planting decisions. These results also hold when comparing variable importance on separate 
models run for each year as shown in Fig. F.11. 

Finally, we explore the out-of-sample prediction errors in order to provide some indication of how the results might generalize to 
the other areas. Fig. 6 shows the out-of-sample MSE for the two highest performing models. For example, in the “Meru/Nyeri” row, a 

Fig. 5. Random forest model results showing variable importance. Higher values in mean increase in MSE when a variable is dropped means higher 
importance of a given predictor variable. Lag types are presented as columns (a:h) and variables within models are presented as rows. Results are 
subsetted by region where Laikipia county is circle symbol; Meru and Nyeri counties are triangles. 

N. Krell et al.                                                                                                                                                                                                           



Climate Risk Management 35 (2022) 100396

12

model was fit to the Laikipia data and then used to predict Meru and Nyeri households. Overall, the out-of-sample accuracy does about 
as well as in-sample accuracy for the two top performing models. 

We do find some difference in the out-of-sample performance across lag types. The largest difference is found in 10-year lag. The 
out-of-sample MSE for Laikipia (i.e. the model fit to Meru and Nyeri and then used to predict Laikipia) is higher than the out-of-sample 
MSE for Meru/Nyeri for the longer lag types (5- and 10-year), whereas the reverse is true for lag type of 1-year. Overall this suggests 
that EO variables may be able to serve as predictors for planting decisions, but the time period used to define the reference period may 
be more idiosyncratic and vary by village and even by farmer. 

6. Discussion 

6.1. Planting decisions relate best to EO data, specifically rainfall and ET0 

We find that rainfall and evaporative demand relate best to planting decisions out of the EO datasets explored. Intuitively, rainfall 
and ET0 should predict planting decisions relatively well since these are environmental variables that farmers recognize and respond 
to. While farmers likely do not have instruments on their farm that measure rainfall or ET0, they sense the temperature and experience 
changes in water availability around the time of planting. Rainfall alone does a fine job of characterizing planting decisions as 

Fig. 6. Out of Sample MSE results. Plot showing models 5-EO (top panel) and 6-all (bottom panel) Out of Sample MSE by region (rows) for the SMS 
survey type. 
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indicated by the majority of farmer-reported planting dates falling within a +/- 2 dekad window of the rainfall-based SOSWRSI esti-
mates for planting date. Previous work has characterized the relationship between rainfall and planting behavior in rainfed settings 
(Marteau et al., 2011; Sultan et al., 2005) and concludes that rainfall, specifically the onset of the rainy season, is the key variable for 
producing optimal yields in rainfed agricultural settings (Cammarano et al., 2012; Mugalavai et al., 2008; Tang et al., 2018). Thus, the 
relationship between rainfall and planting decision is not surprising, and further supports the existing practice of using rainfall in 
modeling studies and famine early warning applications to provide large-scale trends in planting date decision-making. 

We find that ET0 performs very well as an EO product that can be used to predict planting decisions. ET0 is related to farmer 
planting decisions such that with increased solar radiation, farmers likely recognize if it is hotter and drier, and thus the need to delay 
their planting. While the importance of ET0 increases with the length of the lag used to define the anomaly, ET0 even at the 1-year lag 
has a mean increase in MSE above 2 when ET0 is dropped (Fig. 5). Finding a strong positive association between ET0 and planting 
decision is a contribution to the literature on the environmental drivers of planting dates. ET0 is a function of several meteorological 
drivers including incoming shortwave radiation, net longwave radiation, temperature, specific humidity and wind speed. For our study 
site in Kenya, incoming solar radiation influences ET0 more so than other drivers (Hobbins et al., 2018; Harrison, 2018). Our results 
show that rainfall is not only related to planting dates but ET0 provides additional information that could be better utilized and is 
discussed in Section 6.4. 

The relationship between planting and NDVI is not very clear from our model results. This could be due to a number of factors 
related to the heterogeneity in land cover and crop phenology at the field-scale. NDVI at a ∼8 km pixel resolution may not be sensitive 
to planting date and vegetation green up for a number of reasons. Spatially, the landscape is heterogeneous and consists of natural 
evergreen vegetation, natural grasses, and shrubs whose greenness is affected by rainfall and rainfed agriculture. However, even if the 
landscape was uniformly cropped, the greenness signal may not be significant after only 1 month after planting. 

Experimenting with different NDVI methodologies could be informative. This study examined monthly NDVI, to see if the de-
parture from average during the rainfall-derived potential onset month could indicate a clear signal for delayed or early vegetation 
growth. Focusing on sub-monthly NDVI and for a longer window of time could provide more insights to rainfall-vegetation growth lags 
and NDVI performance for estimation of planting dates in this region. Investigations could estimate start of season dates from the 
upward curve of function-fitted NDVI time series, which is a technique used in many studies (e.g. Heumann et al. (2007); Zhang et al. 
(2003); Eklundh and Jönsson (2016)). A useful software package for this is TIMESAT (Jönsson and Eklundh, 2004), which can assist 
with the multi-step process of time series filtering, function-fitting, and estimation of phenology characteristics from remotely-sensed 
data. Future studies could further investigate these approaches such as use of TIMESAT. 

6.2. Relationship between planting dates and household characteristics 

Overall we find poor correspondence between planting dates and household variables in our model. EO datasets are, overall, 
stronger indicators of planting decisions; however, this is not to say that socio-economic variables are irrelevant. Rather, increased 
research on the socio-demographic determinants of planting is needed. The inability of our models to predict planting date using 
household survey data could be a reflection of i) the inherent heterogeneity of households in the study site and ii) the lack of true 
insight into household-level determinants of planting. In this region of Kenya, households exhibit a large degree of heterogeneity in 
income, education, family and farm size, irrigation access, and participation in agricultural cooperatives and water resource gover-
nance groups (Giroux et al., 2020; Gower et al., 2016; Krell et al., 2020). 

We show that environmental markers better explain planting decisions despite the variability of such markers. Because we do not 
make large gains in model performance by including household survey variables, further research–likely qualitative in nature–is 
needed to investigate what household factors strongly influence planting decisions. While we capture some of these attributes in our 
household surveys, further work using Randomized Controlled Trials (RCTs), focus groups, and/or other qualitative means of data 
collection could better reveal the types of variables that should be included in these models. Perhaps the variables selected in our study 
did not function well enough as proxies and other variables that were not observed would have performed better. In general, a deficit in 
the literature exists about the determinants of planting. The impacts of socio-economic factors, community behaviors, and logistical 
and time constraints in rural east African settings on planting decisions ought to be further investigated at the household-level. Future 
research is needed to understand why household variables correlate so weakly to population-wide planting decisions in this context. 

6.3. Temporal variability in planting decisions 

Our real-time SMS-collected data on the week of planting shows that farmers planted within 20 days of the SOSWRSI for the majority 
of the seasons (Fig. 2). The seasons in which farmers fell outside of the bounds of 20 days were the 2016 long rains and the 2016/17 
short rains, whereas all farmers planted within the 20 days of the SOS in the 2018 long and short rains. We proceed with describing 
seasons in which farmers’ planting corresponded with the SOS as well as those which deviated from on-time planting as well as 
possible explanations for those trends. 

Many regions in Kenya experienced drought between 2016 and 2017. Specifically, the short rains in 2016 and the long rains in 
2017 were particularly dry in our field site in central Kenya (Funk et al., 2017; Funk et al., 2018; Uhe et al., 2016). It is noteworthy that 
in two of the seasons which experienced drought conditions, many of the farmers still planted on-time relative to the SOSWRSI for that 
year, which is possibly in response to waiting for the rains to come. It is possible that farmers were eager to plant and in their 
anticipation to plant had prepared their fields to align planting with the SOS. Some of the farmers planted late in the long rains of 2016, 
which could be related to the volume of rainfall during that season as well as an adaptation strategy. 
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Farmers’ response to weather conditions by planting late is an adaptation strategy. Both planting date and cultivar choice matters 
in the context of a growing season as they can shift the flowering time of the crop to part of the season which may have heat and 
temperature conditions that results in improved yields. However, planting late can leave cereal grains such as maize susceptible to 
mycotoxins contamination before harvesting (Blandino et al., 2017). Previous work investigating adaptation options among sorghum 
farmers in west Africa showed that late sowing provided little benefit (Guan et al., 2017). Despite not knowing the outcome of their 
production, we show that farmers tended to plant late during the long rains of 2016 and the short rains of 2017. Importantly, we found 
that very few farmers planted during the 2017 short rains season. Many regions experienced rainfall deficits that led to crop water 
stress during this season (FEWS NET, 2017) and our real-time SMS data indicated that few farmers planted (Appendix D). 

There are multiple causes for early planting. In the long and short rains of 2018 almost all of the farmers planted within +/-2 dekads 
of the SOSWRSI. The 2018 long rains was unique as the wettest long rains season in over 100 years (Kilavi et al., 2018). The 2018 long 
rains season was abnormal in that the rains caused flooding, land subsidence (Rateb and Hermas, 2020), and displacement (MacLeod 
et al., 2020). Apart from abnormally high levels of rainfall, farmers may plant early due to a mismatch in timing or availability with 
weather forecasts. Patt et al. (2005) assert that farmers may only hear of forecasts after they have made planting decisions. Addi-
tionally, false onsets can drive early planting behavior. False onsets are periods of heavy rainfall storms followed by dry spells or dry 
periods, which can make it seem that the start of season has occurred when it has not (Dunning et al., 2016). False onsets pose a risk to 
agriculture because significant crop loss can occur if timing of planting is misaligned with rainfall and thus germination cannot occur 
or seedlings cannot survive during the subsequent dry period (Dunning et al., 2016; Marteau et al., 20090. Lastly, some farmers may 
decide to plant early in order to double crop within that season (Borchers et al., 2014). 

6.4. Significance of findings for modeling and Famine Early Warning Systems applications 

Planting dates are important variables for crop modeling studies as they are instrumental in determining the climatic conditions 
experienced for crop growth. Similarly, the onset of the rainy season is also used as a unique variable for drought early warning systems 
applications (Shukla et al., 2021). In addition, delays in the rainy season onset have a strong relationship to grain prices which can be 
used to enable famine early warning efforts (Davenport et al., 2021). Our study combines both planting date and the season onset in 
order to evaluate how well farmers’ decisions align with EO and household variables. The finding that both rainfall and evaporative 
demand have the strongest predictive relationship to planting decisions is instructive for Famine Early Warning Systems applications 
which can use these EO products for triggering relief intervention. Additionally, changing the reference period used to define the EO 
anomaly only leads to small changes in predictive accuracy in the random forest models; therefore showing that even having the 
previous year’s EO data is instructive for estimating farmer planting dates. Guido et al. (2020) showed previously that many Kenyan 
agriculturalists will form their expectation of upcoming seasonal rainfall on their observations of past, specifically recent, rainfall 
seasons. Therefore EO products that are recent, even from the past year, are useful for predicting farmer decision-making such as 
planting dates and increasing the time period used to define the anomaly does not add increasing levels of predictive power. 

6.5. Study limitations 

There are limitations in combining human decision-making information and EO datasets as well as sources of error within each 
dataset. First, many of the farmers surveyed represent a fairly homogeneous area in terms of climate. The results would have been more 
robust if similar surveys existed that capture real-time dynamics of planting in other semi-arid regions in Africa. Additionally, for 
farmers who experience higher annual rainfall totals, such as those in Meru county in the northeast area of the study site, the rainfall 
EO data may not be as good of a predictor for planting decisions because there is generally sufficient rainfall for planting. 

Several definitions of the Start of Season exist, and there is not one single best metric for determining rainfall onset in east Africa. 
We used the SOSWRSI because it is common in modeling studies and for famine early warning systems. However, there are some well 
known issues with the AGRHYMET rainfall-threshold methodology that should be acknowledged. The current implementation of a 
univariable rainfall-based trigger for onset of season is unable to account for sudden changes in conditions during the initial delicate 
seedling stage (e.g. sharp increases in temperature and wind speed, or humidity, which could result in significant soil respiration 
offsetting the first rain of the season). Conversely, in semi-arid regions where rainfall is low, but evapotranspiration is relatively lower, 
the rainfall-based onset trigger may never be satisfied, though crops are being produced, thus resulting in an underestimation of crop 
production by the model. The latter example is a commonly observed issue when using the WRSI model in marginal cropping zones of 
Somalia and Ethiopia, particularly during the short rains season. Furthermore, the rainfall thresholds currently used are somewhat 
arbitrary, and not definitively agreed upon (other common thresholds include two consecutive dekads of at 20 mm). In either case, it is 
reasonable to imagine different crops require different soil moisture levels for germination, and thus a crop specific threshold may 
provide superior SOS accounting. Because our definition of ’on time’ planting decisions was expanded to planting within two dekads 
(20 days) of the SOSWRSI, we have adjusted for slight variations in the start of season which may be demonstrated in other metrics of 
SOS. 

Random forest models provide many advantages when demonstrating relationships between a set of outcome and independent 
variables; there are however also a few limitations. First, random forest models will overestimate continuous variables relative to 
discrete variables because split points are fixed for discrete variables whereas continuous variables are not. Because our continuous 
variables do not yield similar results to the discrete variables (e.g. household size and education level of respondent), this limitation is 
less concerning. Second, a reason why EO variables outperform household variables could be because EO variables change from year- 
to-year whereas household variables remain constant. 
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7. Conclusion 

When to plant is one of the most important decisions a farmer makes at the start of the growing season. Often researchers and 
humanitarian actors are limited by empirical data on planting dates in rural settings and have to resort to index-based or satellite 
estimates of planting which may not be precise or adequately represent within-community variability. Using a real-time estimator of 
planting dates, SMS surveys, we investigated the relationship between several EO datasets and household variables for a study pop-
ulation of ca. 650 farmers in central Kenya. We find that planting dates vary across seasons and years and do not always co-vary with 
the SOSWRSI. Outputs from random forest models demonstrated which combinations of socio-economic variables and environmental 
datasets best explain planting decisions. We find that models with only EO variables perform as well as models with both socio- 
economic variables and EO variables. Thus, with only the EO data (NDVI, evaporative demand, and rainfall) we can predict 
planting behavior fairly well. We also consider which EO variables best predict planting dates and find that evaporative demand and 
rainfall improve predictions more so than NDVI. 

Overall, we do not find household survey variables to predict planting decisions at the population scale; however, that does not 
render socio-economic variables as irrelevant. Rather, while Earth Observation variables provide a near-real time snapshot of envi-
ronmental conditions at relatively fine spatial and temporal scales, household level variables collected via household surveys often 
have a lag in when they become available and thus may be more limited in pairing with time-sensitive environmental decisions such as 
planting. Researchers exploring the human dimensions of planting time have primarily used quantitative analyses of household survey 
data to describe associations between planting date and various socioeconomic variables. Unfortunately, these existing studies are 
limited in their ability to explain the complex mechanisms underpinning these relationships, how socioeconomic factors interact with 
each other (and biophysical factors) to produce variable planting dates, and the extent to which their influence on planting time varies 
across scales and between places and agrarian systems. More research in this area is certainly needed. Our study improves the un-
derstanding of biophysical and household-level determinants of planting decision-making from empirical observations, which are 
difficult and costly to collect. The decision of when to plant is an important component of crop modeling studies and this study provides 
empirical evidence of the relationship between environmental factors and farm-level decisions. 
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Appendix A. SMS surveys 

We began the SMS program in Kenya in April 2015. We recruited farmers from CWPs that we had worked with previously and held 
group trainings to inform them about the SMS program. Kenyan research assistants ran these group trainings and explained how the 
SMS program would collect information about their farming practices for research purposes. From these trainings approximately 200 
farmers decided to enroll in the program. We compensated farmers for their voluntary participation. Farmers received talk time in 
exchange for them answering the SMS surveys (approximately 0.20 US Dollars per week at that time), which was delivered directly to 
their cell phones. 

We expanded farmers in the program using CWPs as an outreach method between 2015 and 2016. With the permission of the CWP 
managers, we visited CWP and other community-based meetings and invited all attending farmers to participate in the program. 
Research staff enrolled farmers from both new CWPs and non-CWPs areas to cover the region depicted in Fig. 1. In July 2017 when 
active recruitment for participants ended, the enrollment was 645 farmers. 

To collect data via SMS, we used TextIt (https://textit.in), which is a low-cost program that allows users to design and disseminate 
questionnaires. Our survey was composed of a set of 4–8 questions depending on the season and farming circumstances that required 
no more than three minutes to answer the entire survey. We sent surveys each week on Saturday during the planting, growing, harvest, 
and interseason periods. In the survey questions sent during the planting season we asked farmers: “Have you planted maize in the last 
7 days?” The surveys were constructed using skip logic based on the farmers’ responses; e.g. if a farmer responded that she finished 
harvesting all of her maize, the questionnaire automatically switched to the interseason questionnaire. Additional information on the 
design of the SMS survey program, which was concomitantly done in Zambia, can be found in Giroux et al. (2019). 

Appendix B. Household surveys (HHS) 

We completed two household surveys in 2017 and 2018 to retroactively collect information on farmers’ planting dates. We aimed 
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to include the farmers from the SMS program in our household survey as much as possible. All respondents agreed to participate in the 
study through informed and voluntary consent and were above the age of 18. Respondents were not compensated for their partici-
pation. The surveys included a section on maize planting in which the farmers provided the month and week of planting maize per 
season. The maize planting section occurred in the first 20 min of the survey and was followed by sections on demographics, per-
ceptions of climate and weather, use of mobile phones and weather forecasts and migration. The household surveys were conducted in 
either Kiswahili, Kikuyu or Kimeru depending on the respondent’s vernacular language. 

Between March and April 2017, we conducted a household survey using Qualtrics software (Qualtrics and Qualtricsualtrics and 
Qualtrics, 2019). We first sampled a representative number of households from 25 CWPs from 5 Water Resources User Associations 
(WRUAs): Nanyuki, Likii, Ngusishi, Timau, and Ngare Nything. Further description of CWPs and WRUAs can be found in Hannah et al. 
(2021). For CWPs with fewer than 15 households in its membership, we aimed to survey all households. For CWPs with more than 15 
households, we randomly selected and interviewed approximately 30% of the households using a list of households provided by the 
CWP’s chairperson. To randomly select households, we had a local contact from each community create a list of the households in the 
CWP and we set up a meeting with a subset of those farmers to ask if they would like to participate in the survey. We surveyed farmers 
who participated in the SMS program as much as possible. We also included households that were in the same geographic area as the 
CWP being sampled that day but were not participating in the CWP. Therefore we expanded the survey to an additional 32 CWPs. We 
surveyed 504 farmers, but only used responses from 435 farmers for whom we had both planting date information and household 
coordinates. We removed respondents who were flagged as giving incomplete answers. Further details on the sampling strategy can be 
found in (Waldman et al., 2019). 

Between June and July 2018, we conducted a follow-up household survey. We revisited as many of the CWP and non-CWP 
households as possible from the 2017 survey. For households that we could not get in touch with or were unwilling to participate 
in our study, we randomly sampled neighboring households within the same community. We interviewed 605 respondents; however 
516 respondents were used in the study because not all respondents reported planting maize. Additional details of our data collection 
and other variables included in the household survey appear elsewhere (Guido et al., 2020; Krell et al., 2020). 

Appendix C 

Fig. C.7 shows the SOSWRSI mode between 1981–2019 for the long and short rains. 

Fig. C.7. SOSWRSI mode between 1981–2019 in the region. Long Rains is shown in the figure on the left and the Short Rains is shown in the figure on 
the right. 

N. Krell et al.                                                                                                                                                                                                           



Climate Risk Management 35 (2022) 100396

17

Appendix D. Differences between SMS and HHS survey types 

We can compare differences in planting decisions between the two survey types for three seasons: short rains 2016 and 2017, and 
long rains 2018. We are interested in the farmers who responded to both survey types—SMS and HHS—and have plotted the planting 
distributions in Fig. D.8. Visually, we can identify differences in planting decisions between the two survey types for the 2016 OND and 
2018 MAM seasons. We will omit the 2017 OND season from this discussion due to the low number of samples. The HHS data show 
earlier planting and a longer range of dates than the SMS data. For the long rains 2018 season, the planting distribution matches fairly 
well between the two survey types; however there is a greater range in values for the household survey (HHS) planting decisions 
compared to the SMS data. For this season, both survey types showed that the majority of farmers planted “on time”; however for the 
HHS-reported data there is a wider range of planting dates recorded. For the short rains in 2016, we again see earlier planting on 
average from the HHS responses. The HHS-reported planting decisions are approximately 3 to 6 dekads earlier than the SMS-reported 
dates. 

Because of the differences between the SMS and HHS-reported planting dates, we only use the SMS-version of the farmer planting 
dates in our random forest models. These differences could be due to the recall-based nature of the HHS in which these planting dates 
were asked about between 6–12 months after planting. Uncovering the reasons why the two survey types result in different planting 
decisions patterns is beyond the scope of this study, but warrant further investigation. 

Appendix E 

Fig. E.9 shows the R-squared values for the random forest models. 

Fig. D.8. Planting decisions distributions for farmers who responded to both survey types (SMS and HHS).  
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Fig. E.9. Random forest model results showing R-squared across models (rows within subplots, 1:6) and lag types (rows of subplots a:d). Results are subsetted by region where Laikipia county is 
demonstrated by the circle symbol; Meru and Nyeri counties are demonstrated by triangles. 
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Appendix F. Model results for individual years  

Fig. F.10. Random forest model results showing Mean Squared Error (MSE) across models (rows within subplots, 1:6) and lag types (rows of 
subplots a:d) by year. This graphic corresponds to Fig. 4 in the main text. Results are subsetted by region where Laikipia county is demonstrated by 
the circle symbol; Meru and Nyeri counties are demonstrat.ed by triangles. 
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Fig. F.11. Random forest model results showing variable importance by year (corresponds to Fig. 5). Higher values in mean increase in MSE when a 
variable is dropped means higher importance of a given predictor variable. Lag types are presented as columns (a:h) and variables within models are 
presented as rows. Results are subsetted by region where Laikipia county is a circle symbol; Meru and Nyeri countie.s are triangles. 
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J.A. Dixon, D.P. Gibbon, A. Gulliver, Food and Agriculture Organization of the United Nations, Farming Systems and Poverty: Improving Farmers’ Livelihoods in a 
Changing World, Food & Agriculture Org., 2001. 

Dunning, C.M., Black, E.C.L., Allan, R.P., 2016. The onset and cessation of seasonal rainfall over Africa. J. Geophys. Res. 121, 11405–11424. 
Eklundh, L., Jönsson, P., 2016. Timesat for processing time-series data from satellite sensors for land surface monitoring, in. In: Multitemporal Remote Sensing. 

Springer, pp. 177–194. 
FEWS NET, Little rain forecast during the end of the Deyr/short rains season in the Horn of Africa, url:https://fews.net/east-africa/seasonal-monitor/december-15- 

2017, 2017. Accessed: 2021-2-17. 
FEWS NET, 2019 Short Rains in east Africa among the wettest on historical record, url:https://fews.net/east-africa/special-report/january-29-2020, 2020. Accessed: 

2020-1-29. 
Fisher, M., Abate, T., Lunduka, R.W., Asnake, W., Alemayehu, Y., Madulu, R.B., 2015. Drought tolerant maize for farmer adaptation to drought in sub-Saharan Africa: 

Determinants of adoption in eastern and southern Africa. Clim. Change 133, 283–299. 
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., et al., 2015. The climate hazards infrared 

precipitation with stations’a new environmental record for monitoring extremes. Scientific data 2, 1–21. 
C. Funk, D. Pedreros, S. Nicholson, A. Hoell, D. Korecha, G. Galu, G. Artan, Z. Segele, A. Tadege, Z. Atheru, F. Teshome, K. Hailermariam, L. Harrison, C. Pomposi, 

Examining the potential contributions of extreme ”western V” sea surface temperatures to the 2017 March–June east African drought, 2019. 
C. Funk, F. Davenport, G. Eilerts, N. Nourey, G. Galu, Contrasting Kenyan resilience to drought: 2011 and 2017, 2018. 
C. Funk, S. Shukla, W.M. Thiaw, J. Rowland, A. Hoell, A. McNally, G. Husak, N. Novella, M. Budde, C. Peters-Lidard, A. Adoum, G. Galu, D. Korecha, T. Magadzire, M. 

Rodriguez, M. Robjhon, E. Bekele, K. Arsenault, P. Peterson, L. Harrison, S. Fuhrman, F. Davenport, M. Landsfeld, D. Pedreros, J.P. Jacob, C. Reynolds, I. Becker- 
Reshef, J. Verdin, Recognizing the famine early warning systems network: Over 30 years of drought early warning science advances and partnerships promoting 
global food security, 2019. 

Gichangi, E.M., Gatheru, M., Njiru, E.N., Mungube, E.O., Wambua, J.M., Wamuongo, J.W., 2015. Assessment of climate variability and change in semi-arid eastern 
Kenya. Clim. Change 130, 287–297. 

Giroux, S.A., Kouper, I., Estes, L.D., Schumacher, J., Waldman, K., Greenshields, J.T., Dickinson, S.L., Caylor, K.K., Evans, T.P., 2019. A high-frequency mobile phone 
data collection approach for research in social-environmental systems: Applications in climate variability and food security in sub-Saharan Africa. Environ. 
Modelling Softw. 119, 57–69. 

Giroux, S.A., McCord, P., Lopus, S., Gower, D., Dell’Angelo, J., Dickinson, S., Chen, X., Caylor, K.K., Evans, T.P., 2020. Environmental heterogeneity and commodity 
sharing in smallholder agroecosystems. PLoS One 15, e0228021. 

Gower, D.B., Dell’Angelo, J., McCord, P.F., Caylor, K.K., Evans, T.P., 2016. Modeling ecohydrological dynamics of smallholder strategies for food production in 
dryland agricultural systems. Environ. Res. Lett. 11, 115005. 

K. Guan, B. Sultan, M. Biasutti, C. Baron, D.B. Lobell, Assessing climate adaptation options and uncertainties for cereal systems in West Africa, 2017. 
Guido, Z., Zimmer, A., Lopus, S., Hannah, C., Gower, D., Waldman, K., Krell, N., Sheffield, J., Caylor, K., Evans, T., 2020. Farmer forecasts: Impacts of seasonal rainfall 

expectations on agricultural decision-making in Sub-Saharan Africa. Climate Risk Management 30, 100247. 
Guido, Z., Lopus, S., Waldman, K., Hannah, C., Zimmer, A., Krell, N., Knudson, C., Estes, L., Caylor, K., Evans, T., 2021. Perceived links between climate change and 

weather forecast accuracy: new barriers to tools for agricultural decision-making. Climatic Change 168, 1–20. 
Hannah, C., Giroux, S., Krell, N., Lopus, S.E., McCann, L.E., Zimmer, A., Caylor, K.K., Evans, T.P., 2021. Has the vision of a gender quota rule been realized for 

community-based water management committees in Kenya? World Dev. 137, 105154. 
Harris, D., Orr, A., 2014. Is rainfed agriculture really a pathway from poverty? Agricultural Systems 123, 84–96. 
Harrison, L.S., 2018. In: Drivers of atmospheric evaporative demand during African droughts, 98th American Meteorological Society Annual Meeting. 
Heumann, B.W., Seaquist, J., Eklundh, L., Jönsson, P., 2007. Avhrr derived phenological change in the sahel and soudan, africa, 1982–2005. Remote Sensing of 

Environment 108, 385–392. 
Hobbins, M., Harrison, L., Blakeley, S., Dewes, C., Husak, G., Shukla, S., Jayanthi, H., McNally, A., Sarmiento, D., Verdin, J., 2018. Drought in Africa: Understanding 

and exploiting the demand perspective using a new evaporative demand reanalysis, 2018. American Geophysical Union, Fall Meeting. 
Jahnke, H.E., 1982. Livestock production systems and livestock development in tropical Africa, volume 35. Kieler Wissenschaftsverlag Vauk. 
Jain, M., Naeem, S., Orlove, B., Modi, V., DeFries, R.S., 2015. Understanding the causes and consequences of differential decision-making in adaptation research: 

Adapting to a delayed monsoon onset in Gujarat, India. Glob. Environ. Change 31, 98–109. 
Jönsson, P., Eklundh, L., 2004. Timesat’a program for analyzing time-series of satellite sensor data. Computers Geosci. 30, 833–845. 
Kilavi, M., MacLeod, D., Ambani, M., Robbins, J., Dankers, R., Graham, R., Titley, H., Salih, A.A.M., Todd, M.C., 2018. Extreme rainfall and flooding over Central 

Kenya including Nairobi city during the Long-Rains season 2018: Causes, predictability, and potential for early warning and actions. Atmosphere 9, 472. 
Krell, N.T., Giroux, S.A., Guido, Z., Hannah, C., Lopus, S.E., Caylor, K.K., Evans, T.P., 2020. Smallholder farmers’ use of mobile phone services in central Kenya. 

Climate Dev. 1–13. 
Krell, N., Morgan, B., Gower, D., Caylor, K., 2021. Consequences of dryland maize planting decisions under increased seasonal rainfall variability. Water Resources 

Research e2020WR029362.  
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