In this paper its argued that when flexibly applied and adapted to capture dynamics typical in systems innovation projects, the Log Frame Approach (LFA) ( and logical frameworks have considerable utility to support evaluation for both learning and accountability, and for identifying and addressing institutional logics, which leads to system innovation.
Primary Innovation is a five year collaborative initiative demonstrating and evaluating co-innovation, a systemic approach to innovation addressing complex problems, in five ‘innovation projects’ (active case studies) in different agricultural industries. In defining the elements of co-innovation, Primary Innovation has emphasised nine principles which guide activity in the innovation projects.
This paper describes a process for stimulating this engagement to develop a shared understanding of systemic problems, challenge prevalent institutional logics, and identify individual and collective actions that change agents might undertake to stimulate system innovation. To achieve this the process included (i) multiple actors from the agricultural innovation systems, (ii) steps to prompt reflexivity to challenge underlying institutional logics, (iii) an iterative process of practical experimentation to challenge current practices, and (iv) actions to encourage generative collaboration.
This study identifies systemic problems in the New Zealand Agricultural Innovation System (AIS) that affect the ability of participants in the agricultural sectors to co-develop technologies. We integrate structural and functional streams of innovation system enquiry, gathering data through 30 semi-structured interviews with individuals in Government, industry and research. Interviews explored perceptions of the influence of actors, interactions, institutions, infrastructure, and market structure on the effectiveness of AIS functions.
In this article it is analysed the results of applying a co-innovation approach to five research projects in the New Zealand primary sector. The projects varied in depth and breadth of stakeholder engagement, availability of ready-made solutions, and prevalence of interests and conflicts. The projects show how and why co-innovation approaches in some cases contributed to a shared understanding of complex problems. Our results confirm the context-specificity of co-innovation practices
This paper details the analytical framework used for developing a nested understanding of systemic innovation capacity in an AIS. The paper then introduces the two case studies, along with the data and methods of analysis, followed by a presentation of the results as timelines of configurations of capabilities at different levels of the AIS.
Digital agriculture is likely to transform productive processes both on- and off- farm, as well as the broader social and institutional context using digital technologies. It is largely unknown how agricultural knowledge providing organisations, such as advisors and science organisations, understand and respond to digital agriculture. The concept of ‘organisational identity’ is used to describe both initial understandings of, and emerging responses, to digital agriculture, which together show how organisations ‘digi-grasp’, i.e.
This study identifies systemic problems in the New Zealand Agricultural Innovation System (AIS) in relation to the AIS capacity to enact a co-innovation approach, in which all relevant actors in the agricultural sector contribute to combined technological, social and institutional change. Systemic problems are factors that negatively influence the direction and speed of co-innovation and impede the development and functioning of innovation systems. The contribution in the paper is twofold.
The objective of this study is to evaluate the ability of soil physical characteristics (i.e., texture and moisture conditions) to better understand the breeding conditions of desert locust (DL). Though soil moisture and texture are well-known and necessary environmental conditions for DL breeding, in this study, we highlight the ability of model-derived soil moisture estimates to contribute towards broader desert locust monitoring activities.
The Fall Armyworm first landed in West Africa in 2016 and has now spread over the whole continent. It has been recently reported in Yemen and India, and is most likely to spread in South east Asia and South China. This pest invades fields and cause significant damage to crops, if not well managed. FAO’s efforts to support farmers in the affected areas include amongst others the FAO Programme for Action, a global coordination project that brings together development and resource partners to maximize coordinated results and minimize duplications.