While the Agricultural Science and Technology Indicators (ASTI) initiative provides data and analysis of domestic public and private spending on agricultural research and development for a wide range of developing countries, the literature pays little attention, if any, to foreign assistance to agricultural, fishing and forestry research and agricultural extension. The objective of the present study is to fill this gap.
This study explores the properties of innovation systems and their contribution to increased eco-efficiency in agriculture. Using aggregate data and econometric methods, the eco-efficiency of 79 countries was computed and a range of factors relating to research, extension, business and policy was examined. Despite data limitations, the analysis produced significant results.
This paper presents the common framework on CD for AIS developed by TAP and points to the relevance of meta-learning and the importance of “functional capacities”, if higher education institutions and their graduates are to become active players in the agricultural innovation system. The Framework was developed through an inclusive, participatory and multi-stakeholders approach with contributions by TAP Partners, including FARA and the Global Conference on Higher Education and Research in Agriculture.
This study explores the properties of innovation systems and their contribution to increased eco-efficiency in agriculture. Using aggregate data and econometric methods, the eco-efficiency of 79 countries was computed and a range of factors relating to research, extension, business and policy was examined. Despite data limitations, the analysis produced some interesting insights. For instance public research spending has a positive significant effect for emerging economies, while no statistically significant effect was found for foreign aid for research.
The framework is designed to assess resilience to specific challenges (specified resilience) as well as a farming system's capacity to deal with the unknown, uncertainty and surprise (general resilience). The framework provides a heuristic to analyze system properties, challenges (shocks, long-term stresses), indicators to measure the performance of system functions, resilience capacities and resilience-enhancing attributes. Capacities and attributes refer to adaptive cycle processes of agricultural practices, farm demographics, governance and risk management.
Agricultural innovation is an essential component in achieving the SDG and accelerating the transition to more sustainable and resilient farming systems across the world. Innovations generally emerge from collective intelligence and action, which requires effective agricultural innovation systems (AIS). An AIS perspective has been widely adopted, but the analysis of AIS, especially at country level, remains a challenge. The need for and potential of a diagnostic tool for AIS analysis is currently receiving attention in the global agricultural policy debate.
Precision farming enables agricultural management decisions to be tailored spatially and temporally. Site-specific sensing, sampling, and managing allow farmers to treat a field as a heterogeneous entity. Through targeted use of in- puts, precision farming reduces waste, thereby cutting both private variable costs and the environmental costs such as those of agrichemical residuals. At present, large farms in developed countries are the main adopters of pre- cision farming.
Improvements in the sustainability of agricultural production depend essentially on advances in the efficient use of nitrogen. Precision farming promises solutions in this respect. Variable rate technologies allow the right quantities of fertilizer to be applied at the right place. This helps to both maintain yields and avoid nitrogen losses. However, these technologies are still not widely adopted, especially in small-scale farming systems. Recent developments in sensing technologies, like drones or satellites, open up new opportunities for variable rate technologies.
Extension and advisory services (EAS) play a key role in facilitating innovation for sustainable agricultural development. To strengthen this role, appropriate investment and conducive policies are needed in EAS, guided by evidence. It is therefore essential to examine EAS characteristics and performance in the context of modern, pluralistic and increasingly digital EAS systems. In response to this need, the Food and Agriculture Organization of the United Nations (FAO) has developed guidelines and instruments for the systematic assessment of national EAS systems.
Extension and advisory services (EAS) play a key role in facilitating innovation processes, empowering marginalized groups through capacity development, and linking farmers with markets. Advisory services are increasingly provided by a range of actors and funded from diverse sources. With the broadened scope of EAS and the growing complexity of the system, the quantitative performance indicators used in the past (e.g. related to investment, staffing or productivity) are not adequate anymore to understand whether the system is well-functioning.