Crop surface models (CSMs) representing plant height above ground level are a useful tool for monitoring in-field crop growth variability and enabling precision agriculture applications. A semiautomated system for generating CSMs was implemented. It combines an Android application running on a set of smart cameras for image acquisition and transmission and a set of Python scripts automating the structure-from-motion (SfM) software package Agisoft Photoscan and ArcGIS. Only ground-control-point (GCP) marking was performed manually. This system was set up on a barley field experiment with nine different barley cultivars in the growing period of 2014. Images were acquired three times a day for a period of two months. CSMs were successfully generated for 95 out of 98 acquisitions between May 2 and June 30. The best linear regressions of the CSM-derived plot-wise averaged plant-heights compared to manual plant height measurements taken at four dates resulted in a coefficient of determination R2 of 0.87 and a root-mean-square error (RMSE) of 0.08 m, with Willmott’s refined index of model performance dr equaling 0.78. In total, 103 mean plot heights were used in the regression based on the noon acquisition time. The presented system succeeded in semiautomatedly monitoring crop height on a plot scale to field scale.
The European Union (EU) promotes collaboration across functions and borders in its funded innovation projects, which are seen as complex collaboration to co-create knowledge. This requires the engagement of multiple stakeholders throughout the duration of the project. To probe complexity...
La diminution du nombre de prairies, que l’on observe à l’échelle mondiale depuis plusieurs décennies, s’est accompagnée de l’évolution de leur mode de gestion dans un contexte d’intensification de l’usage des terres. Face aux enjeux que ces changements impliquent, tant...
Recently, Agricultural Knowledge and Innovation Systems (AKISs) have gained considerable attention in scientific and political forums in the European Union (EU). AKIS is considered a key concept in identifying, analysing and assessing the various actors in the agricultural sector as...
The European Innovation Partnership for agricultural productivity and sustainability (EIP-AGRI), which can be perceived as a platform based on interaction among farmers, researchers, and advisors/extensionists, represents a useful tool for a better understanding of applied innovation processes. Grounded in the...
The determination of bunch features that are relevant for bunch weight estimation is an important step in automatic vineyard yield estimation using image analysis. The conversion of 2D image features into mass can be highly dependent on grapevine cultivar, as...