Digitalisation is an integral part of modern agriculture. Several digital technologies are available for different animal species and form the basis for precision livestock farming. However, there is a lack of clarity as to which digital technologies are currently used in agricultural practice. Thus, this work aims to present for the first time the status quo in Swiss livestock farming as an example of a highly developed, small-scale and diverse structured agriculture. In this context, the article focuses on the adoption of electronic sensors and measuring devices, electronic controls and electronic data-processing options and the usage of robotics in ruminant farming, namely, for dairy cattle, dairy goats, suckler cows, beef cattle and meat-sheep. Furthermore, the use of electronic ear tags for pigs and the smartphone usage for barn monitoring on poultry farms was assessed. To better understand the adoption process, farm and farmer’s characteristics associated with the adoption of (1) implemented and (2) new digital technologies in ruminant farming were assessed using regression analyses, which is classified at a 10% adoption hurdle. The results showed clear differences in the adoption rates between different agricultural enterprises, with both types of digital technologies tending to be used the most in dairy farming. Easy-to-use sensors and measuring devices such as those integrated in the milking parlour were more widespread than data processing technologies such as those used for disease detection. The husbandry system further determined the use of digital technologies, with the result that farmers with tie stall barns were less likely to use digital technologies than farmers with loose housing systems. Additional studies of farmers’ determinants and prospects of implementation can help identify barriers in the adoption of digital technologies.
Economic pressures continue to mount on modern-day livestock farmers, forcing them to increase herds sizes in order to be commercially viable. The natural consequence of this is to drive the farmer and the animal further apart. However, closer attention to...
Plants are susceptive to various diseases in their growing phases. Early detection of diseases in plants is one of themost challenging problems in agriculture. If the diseases are not identified in the early stages, then they may ad-versely affect the...
Climate smart agriculture (CSA) technologies are innovations meant to reduce the risks in agricultural production among smallholder farmers. Among the factors that influence farmer adoption of agricultural technologies are farmers' risk attitudes and household livelihood diversification. This study, focused on...
The spatial and temporal variability of soil properties (fluid composition, structure, and water content) and hydrogeological properties employed for sustainable precision agriculture can be obtained from geoelectrical resistivity methods. For sustainable precision agricultural practices, site-specific information is paramount, especially during...
The digital transformation in agriculture introduces new challenges in terms of data, knowledge and technology adoption due to critical interoperability issues, and also challenges regarding the identification of the most suitable data sources to be exploited and the information models...